勾股定理的证明方法(共5页).doc

上传人:晟*** 文档编号:12577219 上传时间:2022-05-26 格式:DOC 页数:5 大小:70KB
下载 相关 举报
勾股定理的证明方法(共5页).doc_第1页
第1页 / 共5页
勾股定理的证明方法(共5页).doc_第2页
第2页 / 共5页
勾股定理的证明方法(共5页).doc_第3页
第3页 / 共5页
勾股定理的证明方法(共5页).doc_第4页
第4页 / 共5页
勾股定理的证明方法(共5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

精选优质文档-倾情为你奉上勾股定理的证明方法勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明下面结合几种图形来进行证明。 一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。二、赵爽弦图的证法(图2)第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。