精选优质文档-倾情为你奉上教学反思一、关于数形结合的处理在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下三个方面。第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。