1、邵阳学院课程设计 目 录 1 绪论 . 1 1.1 课题来源 . 1 1.2 课题研究的目的意义 . 1 1.3 国内外现状及水平 . 1 2 开发运行环境 CCS . 错误 !未定义书签。 3 系统方案设计 . 4 3.1 设计原理 . 4 4 软件设计 . 7 4.1 程序流程图 . 7 4.2 源程序 . 8 4.3 设计步骤 . 8 总 结 .14 参考文献 .15 致 谢 .16 附录 .17 邵阳学院课程设计 1 第 1 章 绪论 1.1 课题来源 傅立叶变换是一种将信号从时域变换到频域的变换形式,是声学,语音,电信和信号处理等领域中一种重要的分析工具。快速傅立叶变换( FFT)是
2、快速计算 DFT的一种高效方法, FFT 的出现使 DFT 的运算大大简化,运算时间缩短一至两个数量级之多, DSP 芯片的出现使 FFT 的实 现变得更加方便。 1.2 课题研究的目的意义 随着电子技术和集成电路技术的飞速发展,数字信号处理已经广泛地应用于通信、信号处理、生物医学以及自动控制等领域中。离散傅立叶变换( DFT)及其快速算法 FFT 作为数字信号处理的基本变换,有着广泛的应用。特别是近年来,基于FFT 的 ODFM 技术的兴起,进一步推动了对高速 FFT 处理器的研究。 FFT 算法从出现到现在已有四十多年代历史,算法理论已经趋于成熟,但是其具体实现方法却值得研究。面向高速、大
3、容量数据流的 FFT 实时处理,可以通过数据并行处理或者采用多级流水线结构来实现。特 别是流水线结构使得 FFT 处理器在进行不同点数的FFT 计算时可以通过对模板级数的控制很容易的实现。分析和比较了各种 FFT 算法后,选择基 2 和基 4 混合频域抽取算法作为 FFT 处理器的而实现算法,一种高速、处理点数可变的流水线结构 FFT 处理器的实现方法。 1.3 国内外现状及水平 数字信号处理( Digital Signal Processing,简称 DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。 DSP 有两种含义: Digital Signal Processing(数字信
4、号处理)、 Digital Signal Processor (数字信号处理器 )。我们常说的 DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。 20 世纪 60 年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是以众多学科为理论基础的,它所涉及的范围及其广泛。例如 ,在邵阳学院课程设计 2 数学领域,
5、微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 DSP 主要应用在 数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行得尽可能快,这就决定了 DSP 的特点和关键技术。适合数字信号处理的关键技术: DSP 包含乘法器、累加器、特殊地址产生器、领开销循环的等;提高处理速度的关键技术:流水线技
6、术、并行处理技术、超常指令( VLIW)、超标量技术、 DMA 等。从广义上讲, DSP、微处理器和微控制器(单片机)等都属于处理器,可以说 DSP 是一种 CPU。 DSP 和一般的 CPU 又不同,最大的区别在于: CPU 是冯 .诺伊曼结构的; DSP 是数据和地址空间分开的哈佛结构。 邵阳学院课程设计 3 第 2 章 系统开发平台与环境 TI Code Composer Studio (CCStudio) 是 TI eXpressDSPTM 实时软件技术的重要组成部分 , 它可以使开发人员充分应用 DSP 的强大功能。随着 TI 的 TMS 320C 5000 ( C5K ) 和 TM
7、S 320C 6000 ( C6K ) DSP 平台的应用范围不断扩大 , 已经由其应用于下载视频流的手持因特网接入产品扩展到蜂窝通信网络和光网络的通信基础设施 ,eXpressDSPTM 也便获得了越来越多软件工程师的青睐。 eXpressDSP 还包含了 DSP/BIOS 可伸缩内核 , TMS320TMDSP 标准算法的应用互 操作性和可重复使用性以及 400 多家第三方厂商支持。大部分厂商提供 eXpressDSP 兼容算法、即插式应用以及种类繁多的硬件配件和咨询服务。 Code Composer Studio 3.1 能够使开发人员编制出更多面向高级 DSP 应用的、紧凑的高性能代码
8、。通过实时接入的 DSP 开发者之家网站 , 内置 Update Advisor 对最新的工具、驱动程序及其技术进行自动的流线式管理。只要确保代码和功能调用的正确输入 , 凭借编辑器程序中的 Dynamic CodeMaestro 技术即可快速生成 C 和 C+ 编码。 TI 的 eXpressDSP 产品市场营销经理 Mike Trujillo 说 : 通过充分利用CCS 的工具与功能,编程人员能够大大缩短应用开发的时间。使用 CCStudio 生成的高度优化代码,工程师能够最大限度地发挥高性能 DSP 的全部功能,或者,在其它情况下能够以成本更低的器件来满足其应用需求。 Code Comp
9、oser Studio v3.1 使开发人员能够无缝管理任何复杂程度的项目 , 其项目管理器通过一个集成版本的控制接口与通用资源控制器连接 , 管理 着成千上万的文件。同时支持外部 “ 文件制作 ” 功能 , 使项目能够在 PC 和 UNIX 平台上交叉运行。他们可以通过采用一个改进的产品开发流程 , 就可实现同一组项目文件的共享。于是可以使他们的开发周期缩短数周 , 并获得时间上提前于竞争对手推向市场的优势。 对于那些希望把业界领先的 C6000 TM DSP 平台的高性能与 C5000 TM DSP 平台的低功耗相结合的系统开发者来说 ,Code Composer Studio v3.1
10、为使其同时调试混合多处理器成为了可能 。 Code Composer Studio v3.1 还增加了实时数据交换 (RTDX TM ) 仿真功能 , 可支持来自任何地方的 2 至 50 个 C5000 和 C6000 DSP 器件同时运行。此外 , 支持 RTDX 的仿真器还实现了实时 DSP/BIOS TM 仿真调试 , 该高级调试功能可以使开发人员更深入地了解 邵阳学院课程设计 4 DSP 代码在硬件或仿真状态中的运行情况。 3 系统方案设计 3.1 设计原理 3.1.1离散傅里叶变换 DFT 对于长度为 N 的有限长序列 x(n),它的离散傅里叶变换( DFT)为 X(k)= 0 *)
11、(n WnxN-nk ( 1) 式中 , WN=e-j*2/N , 称为旋转因子或蝶形因子 。 从 DFT 的定义可以看出,在 x(n)为复数序列的情况下,对某个 k 值,直接按( 1)式计算 X(k) 只需要 N 次复数乘法和( N-1)次复数加法。因此,对所有 N 个 k 值,共需要 N2 次复数乘法和 N(N-1)次复数加法。对于一些相当大有 N 值(如 1024 点)来说,直接计算它的 DFT 所需要的计算量是很大的,因此 DFT 运算的应用受到了很大的限制。 3.1.2快速傅里叶变换 FFT 旋转因子 WN 有如下的特性。 对 称性 : WNk+N/2=-WNk ( 2) 周期性:
12、WNn(N-k)=WNk(N-n)=WN-nk ( 3) 利用这些特性,既可以使 DFT 中有些项合并,减少了乘法积项,又可以将长序列的 DFT 分解成几个短序列的 DFT。 FFT 就是利用了旋转因子的对称性和周期性来减少运算量的。 FFT 的算法是将长序列的 DFT 分解成短序列的 DFT。例如: N 为偶数时,先将 N 点的 DFT 分解为两个 N/2 点的 DFT,使复数乘法减少一半:再将每个 N/2点的 DFT 分解成 N/4 点的 DFT,使复 数乘又减少一半,继续进行分解可以大大减少计算量。最小变换的点数称为基数,对于基数为 2 的 FFT 算法,它的最小变换是2 点 DFT。
13、一般而言, FFT 算法分为按时间抽取的 FFT( DIT FFT) 和按频率抽取的 FFT( DIF FFT) 两大类。 DIF FFT 算法是在时域内将每一级输入序列依次按奇偶分成 2 个短序列进行计算。而 DIF FFT 算法是在频域内将每一级输入序列依次奇偶分成 2 个短序列进行计算。两者的区别是旋转因子出现的位置不同,得算法是一样的。在 DIF FFT 算法中,旋转因子 WN 出现在输入端,而在 DIF FFT 算法中它出邵阳学院课程设计 5 现在输入端。 假定序列 x(n)的点数 N 是 2 的幂,按照 DIF FFT 算法可将其分为偶序列和奇序列。 偶序列 : x(2r)=x1(
14、r) 奇序列 : x(2r+1)=x2(r) 其中: r=0,1,2,N/2 -1, 则 x(n)的 DFT 表示为 式中, X1 (k)和 X2(k)分别为 X1(r)和 X2(r)的 N/2 的 DFT。 由于对称性, WNk+N/2=-WNk。 因此, N 点 DFT 可分为两部分: 前半部分: x(k)=x1(k)+WkNx2(k) ( 4) 后半部分 : x(N/2+k)=x1(k)-WkNx2(k) k=0,1,N/2 -1 ( 5) 从式 ( 4) 和式 ( 5) 可以看出,只要求出 0N/2-1 区间 x1(k)和 x2(k)的值,就可求出 0N-1 区间 x(k)的 N 点值
15、。 以同样的方式进行抽取,可以求得 N/4 点的 DFT,重复抽取过程,就可以使 N点的 DFT 用上组 2 点的 DFT 来计算,这样就可以大减少运算量。 基 2 DIF FFT 的蝶形运算如图 3.1 所示。设蝶形输入 为 x1(k)和 x2(k),输出为x(k)和 x(N/2+K),则有 x(k)=x1(k)+WkNx2(k) ( 6) x(N/2+k)=x1(k)-WkNx2(k) ( 7) 在基数为 2 的 FFT 中,设 N=2M,共有 M 级运算,每级有 N/2 个 2 点 FFT 1 1 10 0 0N N Nnk nk nkN N Nn n nX k x n W x n W
16、x n W 为 偶 数n为 奇 数 / 2 1 / 2 1 212002 2 1NN rkrkNNrrx r W x r W / 2 1 / 2 12212 rk rkkN N Nx r W W x r W / 2 1 / 2 11 / 2 2 / 2rk k rkN N Nx r W W x r W 12 kNX k W X k, 0 , 1 , . / 2 1r k N邵阳学院课程设计 6 蝶形运算,因此, N 点 FFT 总共有 MN/2 个 蝶形运算。 图 3.1 基 2 DIF FFT 的蝶形运算 例如:基数为 2 的 FFT,当 N=8 时,共需要 3 级, 12 个基 2 DIT
17、 FFT 的蝶形运算。其信号流程如图 3.2 所示。 x(0) x(0) WN0 x(4) x(1) -1 WN0 x(2) x(2) -1 WN0 WN2 x(6) x(3) -1 -1 WN0 x(1) x(4) -1 WN0 WN1 x(5) x(5) -1 -1 WN0 WN2 x(3) x(6) -1 -1 WN0 WN2 WN3 x(7) x(7) CABA BCA BC邵阳学院课程设计 7 -1 -1 -1 图 3.2 8 点基 2 DIF FFT 蝶形运算 从图 (b)可以看出,输入是经过比特反转的倒位序列,称为位码倒置,其排列顺序为 x(0),x(4),x(2),x(6),x
18、(1),x(5),x(3),x(7),输出是按自然顺序排列,其顺序为x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7). 4 软件设计 4.1 程序 流程图 串口设置 AD 设置 设置信号源类型、频率幅值、和采样点数 串口接收, AD 采样 位码倒置 FFT 运算 DSP 初始化 邵阳学院课程设计 8 图 4.1 程序流程图 4.2 源程序 见附录。 4.3 设计步骤 ( 1)启动 CCS,在 CCS 中建立一个 C 源文件和一个命令文件,并将这两个文件添加到工程,再编译并装载程序: 阅读 DSP 原理及应用中 FFT 用 DSP 实现的有关程序。 双 击 , 启动 CCS 的仿真平台的配着选项。选择 C5502 Simulator。 邵阳学院课程设计 9 图 4.2 CCS 环境仿真器选择界面 ( 2) 启动 CCS2 后建立工程文件 FFT.pjt