关于GIS中距离测算的探讨-毕业论文.doc

上传人:滴答 文档编号:1299780 上传时间:2019-02-03 格式:DOC 页数:11 大小:840KB
下载 相关 举报
关于GIS中距离测算的探讨-毕业论文.doc_第1页
第1页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第 1 页 ( 共 11 页 ) 关于 GIS 中距离测算的探讨 摘要 : 本文 对 GIS 中 常用的几种 距离 测算 的 基本 概念、 原理 进行分析 , 结合ArcGIS 和相关软件阐述了 欧氏距离 、曼哈顿距离 和 网络距离 在实际应用中 的 测算 , 并 探讨了不同尺度和应用环境下 距离 测算 时应该注意的事项。 关键词: 距离测算 ; GIS; 欧氏距离 ;曼哈顿距离;网络距离 0 引言 “距离”是人们日常生活中经常涉及的概念,它描述了两个事物或实体之间的远近程度。日常用到的距离包括 欧氏距离 、曼哈顿距离和网络距离。其中,最常用的是 欧氏距离 ,无论是矢量结构还是栅格结构都很容易

2、实现。在 GIS 中,距离通常是两个地点之间的计算,但有时人们想知道一个地点到所有其他地点的距离,这时得到的距离是一个距离表面。如果一区域中所有的性质与方向无关,则称为各向同性区域。以旅行时间为例,如果从某一点出发、到另一点的所耗费的时间只与两点之间的 欧氏距离 成正比,则从一固定点出发、旅行特定时间后所能达到的点必然组成一个等时圆。现实生活中,旅行所耗的时间不只与 欧氏距离 成正比,还与路况、运输工具性能等有关,从固定点出发、旅行特定时间后 所能到达的点则在各个方向上是不同距离的,形成各向异性距离表面 ,如 图 1 所示 。 图 1 各向 同性和各向异性的距离表面 第 2 页 ( 共 11

3、页 ) 考虑到阻力影响计算的距离称为耗费距离。物质在空间中移动总要花费一些代价,如资金、时间等,阻力越大耗费也越大。相应的通过耗费距离得到的距离表面成为阻力表面或耗费表面,其属性值代表一耗费或阻力大小。可以根据阻力表面计算最小耗费距离。 对于描述点、线、面坐标的矢量结构,也有一系列的不同于 欧氏距离 的概念。 欧氏距离 通常用于计算两点的直线距离: 1kk ki j i jd X X Y Y (1) 当有障碍或阻力存在时,两点之间的距离就不能用直线距离。计算非标准 欧氏距离 的一般 公式为: 1kk ki j i jd X X Y Y (2) 当 k=2 时,就是 欧氏距离 计算公式。当 k=

4、1 时,得到的距离称为曼哈顿距离 1-2。 1 欧氏距离 1.1 欧氏距离 的原理及实现方法 欧氏距离 是一个通常采用的距离定义,它是在 m 维空间中两个点之间的真实距离。 在 ArcGIS 中,可以通过简单地点击 (“measure”)工具来得到两点之间的 欧氏距离 (或若干点之间的累计距离)。许多ArcGIS 空间分析会顺带给出一些距离值。在空间连接中,线或多边形之间的距离是最近点之间的距离。在 ArcToolbox Analysis Tools Proximity 中, Near 工具用来计算图层中任一点 与另 一图层中跟它最近的线或点的距离。某些操作需要用到同一图层或不同图层中任意两点

5、之间的距离即距离矩阵。 ArcToolbox 里的点距离( Point Distance)工具可以实现这个功能,调用办法为依次点击 ArcToolbox Analysis Tools Proximity Point Distance。在输出文件中,如果 DISTANCE值为 0,则可能实际距离确实为 0(例如,某点跟它自身的距 离),也可能是超出了搜索半径之外。 1.2 欧氏距离 的计算公式 二维的公式 : 221 2 1 2d x x y y (3) 三维的公式 : 第 3 页 ( 共 11 页 ) 2 2 21 2 1 2 1 2d x x y y z z (4) 推广到 n 维空间,的公

6、式 : 212iid x x (5) 其中 i=1,2.n ( n 为自然数), Xi1 表示第一个点的第 i 维坐标 ,Xi2表示第二个点的第 i 维坐标 。 n 维欧氏空间是一个点集 ,它的每个点可以表示为 (X(1),X(2),.X(2),其中 X(i)(i=1,2.n)是实数 ,称为 X 的第 i 个坐标 ,两个点 X 和 Y=(Y(1),Y(2),.Y(2)之间的距离 d(x,y)定义为上面的公式。可看作信号的相似程度。距离越近就越相似,就越容易相互干扰,误码率就越高。 1.3 欧氏距离 的测算 及适用 欧氏距离 的测算 方法不止一个,如 可以通过 网络分析中心NODEDISTANC

7、E 命令来实现 ,在此主要探讨如何不用网络分析来计算。 在计算 欧氏距离 之前,首先要准备数据,并一次完成数据格式 的转换,生成相应 coverage。 如果研究区的地理范围较小(如一个城市或一个县域单元),直角坐标系下两个结点 (x1, y1)、 (x1, y2)之间的 欧氏距离 可以近似地表作 : 2 2 1 / 21 2 1 2 ( ) ( ) d x x y y (6) 1.3.1 生成县域重心 县域重心的生成主要利用 ArcToolbox 工具箱中的 Data Management Tools 工具来实现 , 从而完成要素到点之间的转换。 1.3.2 计算 欧氏距离 在 ArcGIS

8、 软件中的测算主要是通过具体工具来实现的,具 体就是利用 ArcToolbox 工具箱 Analysis Tools 工具下的 Proximity 来实现Point Distance。需要注意的是 这里不需要限定收索半径,因为我们需要计算所有的距离。 同时 所得表中一共有 203(县) 4(市) = 812条距离记录。在距离表中加入一列 airdist ,根据公式airdist=distance/1000 计算,就可 得到 欧氏距离 的公里数 。 2 曼哈顿距离 2.1 曼哈顿距离的概念 及原理 第 4 页 ( 共 11 页 ) 曼哈顿距离 是指 两点在南北方向上的距离加上在东西方向上的距离,

9、即 , i j i jIJD X X Y Y (7) 对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。 例如在平面上,坐标( x1, y1)的点 P1 与坐标 ( x2, y2) 的点P2 的曼哈顿距离为: 1 2 1 2d x x y y (8) 要注意的 是,曼哈顿距离依赖坐标系统的转度,而非系统在坐标轴上的平移或映射。 其 命名原因是从规划为方型建筑区块的城市(如曼哈顿)间,最短的行车路径而来(忽略曼哈顿的单向车道以

10、及只存在于 3、 14 大道的斜向车道)。任何往东三区块、往北六区块的的路径一定最少要走九区块,没有其他捷径。 2.2 曼哈顿距离的测算 及应用 曼哈顿距离的测算方法也是不止一种,我们在此还是主要探讨如何不用网络分析来计算。 2.2.1县域重心 和城市重心 XY 坐标 的添加 这里主要利用 ArcToolbox 工具箱中 Data Management Tools 和Coverage Tools 工具,来实现县域重心和城市重心 XY 坐标的添加。并将 所得结果保存在 x-coord 和 y-coord 两列中。 2.2.2 将坐标连接到县和市的距离表 要实现这部需要利用 Dist.dbf 表,

11、通过 Joins and Relates 来实现。过程中应当注意的是要选择 FID 字段和 INPUT_FID 字段作为连接关键词把两个表连接起来(源数据表 CntyNEpt 和 目标表 Dist.dbf)。 同样,在连接 City4 属性表和 Dist.dbf 表 时也应选择 FID 和 NEAR_FID字段作为关键字。 2.2.3 曼哈顿距离 的计算 曼哈顿距离的计算非常简单, 在前期数据准备到位之后只需 利用公式 : 第 5 页 ( 共 11 页 ) Mdist = abs(x-coord - point-x)/1000+abs(y-coord - point-y)/1000 (9) 来

12、 计算 其 数值 就行 。 过程中 应当注意的是 所得曼哈顿距离的单 为公里 , 通常要比欧氏距离大。 3 网络距离 3.1 网络距离的概念 网络距离是基于 实际路网 (如 公路网, 铁路网 )的最短路径( 或最短时间或 最小成本)距离。如果是栅格形路网,可以用曼哈顿距离近似地代替网络距离。 3.2 网络距离和网络时间的测算 网络 由一组 结点 及连接结点的 线段 (边或连接线)组成。如果线段方向是确定的(如单向的街道),我们得到一个 定向网络 。一个没有确定方向的网络可以看作定向网络的一种特例,即每条线段有两个可能的方向。 最短路径问题 就是寻找从某个起点到某个终点之间的最短路径,即在给定线

13、段阻滞(如旅行速度)的情况下距离最短或时间(费用)最省。最短路径问题有多种解决办法,如标号设定算法及赋值图像法(或 L-矩阵法)。 3.2.1最短路径问题的标号设定 广为使用的 标号设定算法 最早由 迪卡斯缺 ( Dijkstra,1959)提出。该方法是这样的,为每个结点 设置一个 “标签 ”,代表到某个 结 点的最短距离。为简便起见,起始结点被命名 为结点 1。本法包括 四 个步骤,在此就不再论述。 3.2.2用 ArcGIS 测算网络距离和时间 ArcGIS 中处理的网络包括交通网络和 市政管道 网络, 在这里 我们只讨论交通网络。在许多空间分析中,我们需要一系列起点和终点两两 之间的距

14、离矩阵。为此,需要用 ArcInfo 工作站,即用 ArcPlot模块里面的 NODEDISTANCE 命令。默认情况下, NODEDISTANCE命令是通过公路网络来计算最短距离。同时它也提供了计算 欧氏距离或曼哈顿距离的选项。恰当 地定义 选项 IMPEDANCE 作为时间或成本,就可以计算最短交通时间或最小交通成本。 网络距离矩阵 的计算也主要是通过利用 ArcGIS 软件来实现的。第 6 页 ( 共 11 页 ) 具体就是在建立网络的基础上用 NETCOVER 命令建立网络计算的路径系统,从而定义始结点、末结点及阻力参数,最后,用NODEDISTANCE 命令来计算始末结点之间的网络距

15、离。 需要注意的是, NODEDISTANCE 命令只计算网络上结点之间的距离。但是, 起始点或 终 点有可能并不在网络上。虽然 起 始点(或 终 点) 到 网络结点之间的距离 有可能 很小,但仍 需计算在内。这是计算网络距离时需要考虑的一个重要步骤。 4 网络距离实例应用 在 ArcGIS 的空间分析中,网络距离的应用非常常见,可以说无处不在。在此仅以河南省的 108 个县级单位为例来阐述网络距离的实例应用。采用的数据有河南省 108 个县级行政区域图、河南省公路网、河南省道路网及区域边界。具体如下图 2 所示: 图 2 河南省公路、铁路网络图 第 7 页 ( 共 11 页 ) 欲 实现网络

16、距离的测算首先要得到这 108 个县级行政单位的重心点,而重心点的求得又必须在网络数据集的基础上才能 进行。所以首先要 利用 ArcCatalog 模块建立网络数据集,然后将所得数据集拉到ArcMap 操作界面下,从而求得这 108 个县级行政单位的重心点。接下来,用 ArcToolbox 工具箱中的 Network Analyst 工具下的 OD 成本矩阵来测算这 108 个重心点两两之间的距离,从而就实现了网络距离的测算。其中要注意的就是在设定搜索范围的时候,我们可以根据具体情况来适当扩大搜索半径。由于最终测算的结果是一个 108 乘以108 的矩阵,在此就不在以图示的方式呈现了。 5 测

17、地距离 虽然 欧氏距离 和曼哈顿距离 是 GIS 距离测 算中最常见的两种, 但在地理信息系统的具体应用过程中,我们又常常会遇到这样的问题 ,如 求一个状崎岖蜿蜒的地块长度 ; 在某一具体地块内两点间铺设管线,选取最短路径并计算相应的距离 ; 行驶 在形状极不规则的湖泊中的 小船沿什么样的路径 前进才能使起点与终点间的航程最短 3-4。 通常情况下,我们总是习惯在相应的起点和终点之间用直线段来相连,来求取相应的直线距离,即 欧氏距离 。但这种常用的方法并不是对所有的情况都是有效的,当两点间的直线段有部分落在所考虑 的区域之 外时, 欧氏距离 对所要讨论的问题在实际上是没有意义的,自然这就是 欧

18、氏距离 在 GIS 空间分 析过程中的局限所在。原因在于在定义区域中两点间距离的过程中,没有考虑到区域连通性,仅考虑了起点与终点间的抽象距离。为了克服 欧氏距离 的局限性,在实际应用的过程中,我们运用数学形态中 的 测地距离,将其引用到 GIS 空间分析的领域里,并得到了一种在矢量型 GIS 中测地距离的求取方法,显然,无论在理论还是应用方面,它都具有十分重要的意义。 5.1 测地距离求取的基本思想 首先要 求得两点间的直线段与多边形各边所有可能的交点并判断出首末 交点的位置 ,然后 依据首末交点来对其间的多边形顶点重新排序,并在此基础上逐次剔除所有的凹点, 这样就能得到测地弧(标注引用)上所

19、有的转折点 ,最后 通过累加测地弧上相邻转折点间的距第 8 页 ( 共 11 页 ) 离就可得到两点间的测地距离 。 6 方位距离 方位距离的测算是 GIS 开发、数据库建立、数字地图应用当中的几何分析、地形分析、网络分析等空间分析中最基本的量算。 然而受传统地图数学基础建立思想和模拟地图分析算法的影响,当前 GIS及数字地图中方位、距离的测算都是在具体的投影平面上操作的。随着 GIS 应用的不断深入及“数字地球”的提出, GIS 的数据区域不断得到拓展,相继出现了大型 GIS,其作用的空间有局部的小范围拓展到地学大范围甚至全球范 围(标注引用)。区域的扩大,造成地图投影的选择应用变得非常复杂

20、,不确定因素显著增加。在传统的地图投影当中,为了限制变形,我们常常采用不同的标准纬线或者中央经线,即分带法。 然而对超宽带或跨界于若干带而言,带边缘变形显著增大,邻域拼接非常困难。传统的在局部投影平面上的各种分析、量算方法难以在全域内得到准确实施。故而,在大型 GIS 和大区域数字地图的空间分析当中,方位距离的测算应基于( B,L) 2 维场所决定的 地球椭园面几何参考系 当 中进行 5-6。 7 基于三维栅格的 GIS 距离分析及 应用 基 于三维栅格的 GIS 距离分析 算法可以应用于非均质的三维缓冲体的生成,其中,非均质指的是生长元所处的三维空间是非均质的。缓冲体的生成可以看成从生长元开

21、始,逐步向周围的邻域扩张,继而扩张的半径逐步增大,直到扩张到的体元及生长元的最小距离大于或等于给定的缓冲区半径为止,而对于其中超出缓冲区半径范围的地物则不需要去计算其距离值。 因此,要生成缓冲体,就必须要计算背景体元到生长体元的最小距离。在实际的地质应用当中,又需要考虑在某地物周围生成相应的缓冲体 的过程中遇到的障碍物或约束面的情况。 如:污染源在地下扩散的过程当中遇到不渗透层,地下铺设管道一 定距离范围内遇到坚硬的岩层等。又因为地下岩层的不均一性造成 地层渗透性在各方向上大第 9 页 ( 共 11 页 ) 小不一样,所以,地下污染源在各方向上的扩散速度和污染程度也是不一样的, 也就是说缓冲体

22、在各方向上的扩张距离是不相等的并且在不同距离缓冲体范围内的研究属性也是不一样的,体元间的最短距离不能够用直线距离来表示。此时,可以通过一定的应用模型来对每个体元赋值(属性值),表示经过此点的阻抗或耗费,弱某点不可逾越,则需将此体元的属性附为负值,这样一来栅格模型就可以转变成为网络模型。然后,应用适当的最短距离算法,就可以生成非均质的三维缓冲体了。 如图 3 所 示 。 图 3 地下岩层切面图 图 4 三维缓冲体切面图 图 5 三维缓冲体立体图 图示为一个简化的应用模型,假设上下两层为不同岩性的地层,下面岩层的渗透性要比上面岩层的渗透性要好,同时,在下面的岩层中存在一砂岩透镜体,此透镜体与周围岩

23、性不一样,同时,此透镜体的渗透性要比周围的岩层好。此时,假设在上面的岩层中存在一污染源,将其抽象为一点,此污染源向下进行扩散,影响范围就是生成的缓冲体, 如图 4、图 5 所示分 别为生成的缓冲体的切面和立体图,从图上可以看出,污染源向下经过透镜体的扩散速度要比其它的方向要快 7-10。 8 结语 通过以上论述我们可以知道,空间分析归根结底是考察自然和人类活动在空间分布上的变化,换言之,即考察这些活动相对于参照位置随距离的 变化。很多时候,一旦通过 GIS 测定了距离或时间,我们就可以在 GIS 环境之外开展进一步的研究。从而 GIS 技术的不断进步和广泛应用就能使得相关研究工作变得越来越容易

24、。 在空间平滑和空间插值中使用距离测量 能来确定纳入计算的对第 10 页 ( 共 11 页 ) 象及计算影响的程度; 在服务区分析中,商店与消费者之间的距离(或时间) 能够确定距离消费者最近的商店以及居民到商店购物的频率;在 可达性测量中,距离或 时间是构建移动搜寻或引力法的基础。 另外,人口密度或土地利用强度从城市或区域中心向外 有 随距离衰减的态势。 总之, 本文系统的阐述了 GIS 中 欧氏距离 、曼哈顿距离以及网络距离的概念及测算方法,并用实例探讨了 GIS 中不同尺度和应用环境下的距离测算及应用。 参 考 文 献 1 刘贵明,毛政利,等 .地理信息系统原理及应用 M.北京:科学出版社

25、 , 2008. 2 刘利生,刘元 .空间动态目标间相对距离解算方法的改进 J. 飞行器测控学报, 2005, 24( 6): 39-43. 3 郝向阳 . GIS 中的测地距离 及求取方法 J.解放军测绘学院学报, 1995, 12( 1): 29-34. 4 杨永崇,郭达志 .基于地理坐标的数字地图量算模型 J. 西南交通大学学报, 2005, 40( 3): 318-321. 5 吕晓华,杨国平 .大型 GIS 中方位距离的量算方法 J.测绘学院学报, 2004,21( 2): 138-140. 6 石韫璋 . 关于在地图上量算距离问题 J. 河南师大学报, 1980, 1: 87-95

26、. 7 李芳玉 .基于三维栅格的 GIS 距离分析算法研究与应用 J.计算机工程与应用, 2008, 44( 15) : 246-248. 8 李朝奎,朱庆,王涛,赵杰 . 参心大地坐标系中的几何量算问题 J. 武汉大学学报信息科学版, 2003, 28( 2): 149-157. 9 蒙奕,刘拥华,陈勤彦 . 基于高速公路计重收费系统的货运车辆平均行程距离估算模型 J. 昆明理工大学学报(自然科学版), 2011, 36( 4): 38-42. 10 祝诗蓓,程琳 . 基于最短路径的登时缓冲区分析及其应用 J. 交通运输工程与信息学报, 2011, 9( 1): 107-113. Discussion on the Distance Measure in GIS

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。