1、中国对外贸易空间集聚效应的应对策略分析 引言 长期以来,我国各省份、各区域经济发展的不平衡性是国内外学者关注的热点。国内学者魏后凯( 1994)、杨开忠( 1994)、林毅夫等( 1998)分别运用不同的方法对我国各地区经济增长差异的形成原因、内在机理等进行了较为深入的探讨。对外贸易是经济发展的一个重要组成部分,事实上,有关研究也表明,各地区间对外贸易水平的差异是导致经济发展水平差异的重要原因(李斌和陈开军, 2007),但是,国内学者对于我国各地区对外贸易发展差异的关注却相对较少(魏浩, 2008)。 已有的相关研究大都采用变异系数、不平衡系数、基尼系数以及 协整分析等传统的统计研究方法进行
2、分析,随着 Krugman新地理经济学理论的不断发展,越来越多的研究开始寻求使用不同的方法将地理、区位等因素纳入贸易以及经济的分析中来,对不同地理位置上的个体之间的经济相关性以及地理分布情况进行统计分析,并通过与地图相结合的形式将分析结果形象地展示出来。在此基础上,将空间分析与传统的计量经济学方法相结合就形成了新的空间计量经济学分析。目前,这类研究方法已被广泛地应用到各领域中,比如经济学。在国外,不少学者已较多运用其进行经济分析,但在国内,相关的研究才刚刚起步,而且几乎没有学者 运用空间统计分析、空间计量分析对我国不同省市的对外贸易差异情况及相关影响因素进行过研究。 基于此,本文首先使用 Ge
3、oda和 Arcmap软件,运用空间统计分析 Morans I指数对中国 1978-2007年间各省份对外贸易的空间相关性进行分析,形象地揭示出改革开放以来我国各省份对外贸易的地区分布情况;其次,使用Matlab 软件,运用空间计量分析方法研究了影响我国各地区对外贸易发展的因素及其空间影响效应;最后,提出协调省市间、区域间对外贸易发展的政策建议。 一、文献综述 近年来空间统计分析技术已经在广泛的 领域内得到应用,国外社会和行为科学的研究多借助空间统计分析方法来探索社会现象的空间模式和异常分布。目前,国外学者已经将空间统计分析方法和理念广泛运用到经济学研究中来。例如 Chakrabarti( 2
4、003)对 FDI 的空间分布进行了理论分析。 Ping等( 2004)利用全局和局部的自相关统计方法对棉花产量的空间相关性及其模式变化进行了研究。 Gallo 和 Ertur( 2005)对 1980-1995 年期间 138 个欧洲地区人均 GDP的时空动态变化进行了研究,认为存在全局和局部空间自相关,地区分布具有空间异质性和不均等性。 Aroca 等( 2005)对 1985-2002年墨西哥贸易自由化和经济收敛的空间尺度进行了分析,发现几个收入集聚地区之间的差异性已经显现,南方地区在收入方面存在空间相关性。Kellera 和 Shiueb( 2007)利用空间统计方法,考察了 1742
5、-1795 年中国 121个地方市场的大米价格差异的空间模式,研究结果认为空间特征对区际贸易的扩张十分重要。 Cabrer-Borrs 等( 2007)分析了西班牙地区的创新空间模式、地区的相互依赖性及其演进,发现当地能力、空间创新溢出都与当地的创新有关。 国内 很少有学者把空间统计分析和空间计量分析方法运用到经济研究中。目前,国内学者关于我国各地区对外贸易地区差异、空间集聚及其影响因素方面的代表性研究主要有: 1.关于地区差距方面 谢昭琼( 2002)认为由于在收入水平、技术水平、人力资本、政策支持、资金状况、运输条件等方面存在差异,东部、西部对外贸易发展差异明显。许雄奇和张宗益( 2003
6、)认为, 1992-2001 年我国各省市之间的出口差异逐渐缩小,但东部、中部、西部三大地带之间出口发展存在显著差异,且中国出口发展的地区差异主要表现在三大地区之间。尹希果等( 2004)认为我国各省市对外贸易发展差距明显。赵伟和何莉( 2007)认为,从地区结构来看,东部、中部、西部三大地带间的差异在总体差异中占主导地位,我国对外贸易发展省际差异具有明显的阶段性,以 1986年和 1991年为界,分为三个阶段,这种阶段性主要与中国对外贸易发展的制度变迁、区域协调发展政策以及不同地区经济发展的差异相关。 2.关于空间集聚方面 到目前为止,国内很少有针对我国对外贸易的空间集聚程度进行定量研究的成
7、果,仅有一些相关的研究成果。蒋满元( 2008)认为,我国对外贸易增长的区域不平衡程度要远远超过经 济增长的区域不平衡程度,全国对外贸易的区域集中度要远远大于 GDP 分布的区域集中度。鲁奇等( 2007)认为,在出口方面,计划经济时期,我国出口国内分布地理集中度比较高,改革开放以后,出口地理集中度有所分散,但从 1992 年以来,随着市场经济体制的确立和不断完善,出口地理集中度又出现集中的趋势。除此以外,还有部分学者对影响我国对外贸易的相关因素做出了研究,高士亮和熊磊( 2008)对中国对外贸易的宏观影响因素进行了实证检验,认为我国各省市出口贸易受其自身 FDI、 GDP 及劳动力人数的显著
8、影响,进口贸易受其 FDI、GDP及国内投资的显著影响。张红霞等( 2009)认为中国各省市对外贸易差异形成的因素主要包括政策因素、外商直接投资因素、人力资本因素、经济性基础设施因素、国内投资因素以及地理区位因素。李文等( 2009)认为地理和初期条件是各地区的收入差距不断扩大以及引进外资成为三大地域间对外贸易发展差异形成的重要原因。 已有研究为本文研究提供了很好的借鉴,本文在已有研究的基础上,运用更为科学的空间统计分析以及空间计量经济学研究方法对我国的对外贸易集聚情况及其影响因素进行更加深入的研究和分析。 二、我国各省份对外贸易空间集聚 的空间统计分析 1.空间统计分析方法 空间自相关有两种
9、指标:全局指标和局部指标。全局指标用于探测整个研究区域的空间模式,使用单一的值来反映该区域的自相关程度;局部指标计算每一个空间单元与邻近单元就某一属性的相关程度。由于全局指标有时会掩盖局部状态的不稳定性,因此,在很多场合需要采用局部指标来探测空间自相关。目前比较流行、最为常用的指标是 Morans I 指数。本文也采用这种指标。 ( 1)全局 Morans I 指数。全局 Moran 指数是用来度量空间自相关的全局指标,反映的是空间邻接或空间邻近的区域单元属 性值的相似程度,即是测量区域单元的集聚效应的,是否具有相同属性的区域单元在空间上或地理上邻近。变量的全局 Moran 指数 I用如下公式
10、计算: 其中,为区域 i与 j 的邻近关系,它可以根据邻 接标准或距离标准来度量。两种最常用的确定空间权重矩阵的规则如下所示。 一是简单的二进制邻接矩阵: 二是基于距离的二进制空间权重矩阵: Moran指数 I的取值一般为 -1, 1,小于 0表示负相关,等于 0表示不相关,大于 0表示正相关。 在零假设条件下,即分析对象之间没有任何空间自相关性,此时 Morans I的期望值为: 对于全局 Moran 指数,可以用标准化统计量 Z( I)来检验空间自相关的显著性水平, Z( I)的计算公式为: 一般情况下,显著性水平可以根据 Z值的 P值检验来确定:通过计算 Z值的P 值,再将它与显著性水平
11、 进行比较,决定拒绝还是接受零假设。如果 P值小于显著性水平 ,拒绝零假设;否则接受零假设。在实际分析过程中,一般取 =0.05。如果取 =0.05,则当 Z -1.96或 Z 1.96时,拒绝零假设,观测变量的空间自相关显著,邻近位置观测属性趋异( Z -1.96)或趋同( Z 1.96);反之,则不拒绝零假设,观测变量在目标区域内整体上不存在显著的空间自相关。 具体来说,根据 Z值的大小可以判断:第一,当 Z值为正且显著时,表明存在正的空间自相关,也就是说,相似的观测值趋于空间集聚;第二,当 Z值为负且显著时,表明存在负的空间自相关,也就是说,相似的观测值趋于分散分布;第三,当 Z值为零时
12、,观测值呈独立随机分布。 ( 2)局部 Moran指数。当需要进一步考虑是否存在观测值的局部空间集聚,哪个区域单元对于全局空间自相关的贡献更大,以及空间自相关的全局评估在多大程度 上掩盖了局部不稳定性时,就必须应用空间联系的局部指标( Local Indicators of Spatial Association, LISA)进行局部空间自相关分析。空间联系的局部指标满足下列两个条件:( 1)每个区域单元的 LISA,是描述该区域单元周围显著的相似值区域单元之间空间集聚程度的指标;( 2)所有区域单元 LISA 的总和与全局的空间联系指标成比例。本文局部指标用局部 Moran 指数,定义如下:
13、 0,表示该空间单元与邻近单元的属性值相似(高高或低低); 0,表示该空间单元与邻近单元属性值不相 似(高低或低高)。 另外,局部指标也可以通过标准化来进行相应的显著性检验,其标准化的形式如下: 这里、 t是地区 i 在年份 t的原始观察值,表示年份 t 所有地区原始观察值的平均值。、 t为正值表示相近观察值的空间聚集而负值表示相异值的空间聚集。 Anselin( 1995)对 LISA 给出了两种解释:首先它可以被用作一个表示空间聚集的存在性的指标;其次它可以被用于局部异值点的诊断。 2.研究说明 到目前为止 Anselin先后开发了 SpaceStat和 Geoda两种空间分析软件,在Ar
14、cGIS、 SAS、 SPLUS、 Matlab 等著名统计软件中,也都已经加入了用于空间统计分析的各种模块或工具箱,也可以根据 Morans I 的定义自己编程计算。本文利用 1978-2007 年中国 30 省份的对外贸易统计数据,采用 Log10对原始数据进行变换以减少变幅,然后利用 Geoda 软件进行全局 Morans I和局部 Morans I 指数分析。由于海南的特殊位置,本文在进行计算和处理时,认为海南与广东、广西相连。 另外,本文研究所用各省份进出口总额数据均来自新中国五十五年统计资料汇编以及历年中国统计年鉴。统计口径按经营单位所在地划 分。由于在 1997年重庆市才被设为直
15、辖市,因此 1997年以前重庆市的相关数据包含在四川省中,为了简便起见,在这里我们把重庆和四川合二为一进行分析。在进行局部分析时,从东部、中部、西部三大区域进行了比较分析 。改革开放以来,一般把中国经济的发展过程或不断深化对外开放的过程分为三个阶段: 1978-1991 年改革开放的初期, 1992-2000 年加快改革开放的时期, 2001-2007 年进一步深化对外开放的时期。因此,本文在分析问题时,时间点的选取基本上都是以这三个阶段为标准,即 1978 年、 1992 年、 2001年和 2007 年。 3.我国各省份对外贸易空间集聚分析结果 ( 1)全局分析: Morans I 指数。
16、从计算结果来看(见下页图 1), 1978-2007年中国 30 个省份历年对外贸易的全局 Morans I 指数都大于零,标准化检验值 Z均为正且都大于 1.96, P 值也都小于 0.05,拒绝原假设( H0)。由此可知,我国 30 个省份的对外贸易存在显著的空间自相关。也就是说,对外贸易水平相似的省份一直趋于空间集聚,发达省份趋于集聚,落后省份也趋于集聚。 从发展阶段来看(见图 1),中国 30 个省份对外贸易的空间自相关经历了先升、后 降、再升、再降的发展过程: 1978-1983 年,空间自相关显著性表现为急剧增强的态势,全局 Morans I 指数从 1978 年的 0.270 增
17、加到 1983 年的 0.472; 1984-1992 年,空间自相关显著性表现为整体下降的态势,全局Morans I 指数从 1984 年的 0.435 下降到 1992 年的 0.370; 1993-2004 年,空间自相关显著性表现为缓慢增强的态势,全局 Morans I 指数从 1993 年的0.385 增加到 2004 年的 0.443; 2005-2007 年,空间自相关显著性开始新一轮下降的态势,全局 Morans I 指数从 2005 年的 0.420 下降到 2007 年的0.411。 ( 2)局部分析: LISA 指标。根据局部 Morans I 的定义, 0 表示被考察省
18、份与其周边省份的对外贸易情况相似,高高集聚型或低低集聚型; 0则表示被考察省份与其周边省份的对外贸易情况相异,高低集聚型或低高集聚型。本文重点考察 0的情况。也就是说,如果一个省份属于高高集聚型,表明此地区的对外贸易比较发达,其对周边省份的正向带动作用比较大(极化效应)、辐射效应比较强;如果一个省份属于低低集聚型,表明此地区的对外贸易比较落后,其对周边省份的 负向带动作用比较大(极化效应)、辐射效应比较强。 计算结果如表 1所示,在 1978-2007年的五个时间点上,表现为空间自相关且通过显著性检验的省份基本都是东部和西部省份,其中,低低集聚型地区基本都是西部省份( 2001 年海南省除外)
19、,高高集聚型地区都是东部沿海省份。从变化情况来看,正负向极化效应日益明显,涉及的省份也日益增多(见表 1)。 从高高集聚 型省份来看, 1978 年高高集聚型省份 Morans I 指数的最大值是 1.065(广东), 2007 年增加到 2.271(上海); 1978 年高高集聚型省 份只有广东和海南, 1992年只有福建, 2001年和 2007年地区的数量增加到 4个,包括上海、江苏、浙江和福建,辐射效应强且显著,其中, 2007 年江苏的 Morans I 指数高达 1.597 且通过显著性检验。 从低低集聚型省份来看,青海、新疆、甘肃三个省份一直是对外贸易发展比较落后的地区,其中,青
20、海一直是对外贸易发展落后的中心地带,四川、西藏、陕西和海南等省份表现出日益脱贫的趋势, 2007 年已经不属于低低集聚型地区,也就是说这些省份的对外贸易表现为快速发展的态势。总的来看,以上海为中心的正向增长极效应、以青海为 中心的负向增长极效应都日益显著且稳定。 从区域分布上来看,在所选取的这几年中,所有高高集聚的省份都是集中在东部沿海地区:上海、江苏、浙江、福建、广东和海南;而所有低低集聚的省份都是集中在西部地区:青海、西藏、新疆、四川、云南和甘肃等。 因此,可以看出,我国各省份间对外贸易情况存在着明显的区域差距,中部、西部地区明显落后于东部地区,而且随着时间的增长,这种差异现象并没有呈现出
21、明显缩小的趋势。 三、影响我国各省份对外贸易因素的空间计量模型分析 1.模型的设定和选择 空间计量模型与一般计量模型的不同之处 就在于前者在模型中引入了空间效应。通常所说的空间效应包括空间自相关(或空间依赖性)和空间差异性两个方面。前者是指一个地区的样本观测值与其相邻地区的观测值显著相关,后者则是指该地区的样本观测值与其相邻地区的观测值不具有显著相关性。在空间计量模型中,我们主要研究的是空间自相关性。事实上,我们所观察到的空间相关性主要来自于两个方面( Anselin, 1988),一方面,不同地区经济变量样本数据的采集可能存在空间上的测量误差;另一方面,相邻地区间的经济联系的确客观存在。通常
22、在进行计量模型分析时,我们假设研究的因变量存 在空间自相关性,空间自相关性在空间回归模型中可以有两种表现方式,它既可以体现在误差项中又可以体现在因变量的滞后项里。据此,由 Anselin( 1998)可得出,空间计量的两种基本模型分别是空间自回归模型( Spatial Auto Regressive Model, SAR)和空间误差模型( Spatial Error Model, SEM)。 空间自回归模型( SAR)的基本形式为: 空间误差模型( SEM)的基本形式为: 其中, Y和 X 分别表示因变量和自变量, i 和 t 分别表示时间(年度)和截面样本个体, 表示解释变量的系数向量, p
23、 和 分别表示空间自回归系数和空间自相关系数(本文统一将其称为空间相关系数), W表示空间权重矩阵,表示截距项,为服从正态分布的随机误差项。 在做面板数据的空间回归分析时,除了以上这两种空间计量模型的选择之外,还有两种效应需要考虑,即固定效应和随机效应。在面板数据研究中,通常所选取的样本个体数值之间存在着一定的差异,这种差异可以解释为固定效应或者是随机效应。所谓固定效应是指不同个体之间的差异变动是确定的,而随机效应则是指这种差异变动是随机的。在多数实证研究中,假设个体效 应属于服从某种分布的随机变量会比较牵强,固定效应往往更符合实际情况 。另外,在选择固定效应还是随机效应时的一个原则是,当样本
24、回归分析局限于一些特定个体时(如本文中所采取的中国 30 个省级区划单位),一般选择用固定效应模型;而当样本是从很大总体中的一个随机抽样时,一般选择用随机效应模型 。 除此之外,还有空间效应和时间效应的问题。空间效应反映的是随区位变化,但不随时间变化的背景变量(如经济结构和自然禀赋等)对稳态水平的影响;时间效应则是代表随时间变化,但不随区位变化的背景变量(如商业周期和暂时性冲击等)对稳态 水平的影响。在实际分析中,有空间效应、时间效应以及空间、时间效应三种模型可供选择,需要根据模型分析的结果进行判断。本文由于只考虑固定效应,因此共涉及六个模型,分别为: SAR的空间固定效应模型, SAR 的时
25、间固定效应, SAR 的时间、空间固定模型,SEM 的空间固定效应模型, SEM 的时间固定效应模型以及 SEM 的空间、时间固定效应模型。 2.空间权重矩阵 W的设定 空间权重矩阵是空间计量模型的关键,也就是地区间空间影响方式的具体体现。前文已经说过,本文分析时使用的权重矩阵遵循的是最简单的二进制相邻原则。表 2(见下页 )给出了本文分析时所设置的中国 30 个省份的地理相邻信息(将海南省设为与广东、广西两省相邻)。 3.参数估计方法 最小二乘法不适合用来估计空间计量经济模型,这是因为在模型包含空间滞后误差项的情况下,虽然 OLS估计量是无偏的,但不再有效。在模型包含空间滞后被解释变量的情况
26、下, OLS 估计量不仅是有偏的而且是非一致的,所以,一般使用极大似然法( ML)来估计空间计量经济模型( Anselin, 1988)。对于空间面板数据模型而言,不能直接使用针对截面回归模型设计的 ML估计程序,这就使得空间面板数据模型的估计问题显得 更加复杂。另外,当空间权重矩阵的维数很大时,空间计量经济学中通常的 ML 估计程序是有问题的,这是因为超过 400以上的空间权重矩阵的特征值难以可靠地估计。目前一个较为优化的方法是采用蒙特卡罗方法来近似对数似然函数中雅克比行列式的自然对数( Barry 和 Pace, 1999)。这种方法在 Matlab 软件包中得到了实现,因此可用来估计上面
27、所提到的六种模型。 4.影响因素的分析 ( 1)解释变量选取、数据及其来源。本文共选取了全国 30 个省份(四川、重庆合二为一), 1994-2008 年共 15 年的相关面板数据进行分析。数据 主要来源于历年中国统计年鉴、中国城市统计年鉴、中国对外经济贸易年鉴,另外,还参考了中国国家统计局以及 infobank 高校财经数据库等网站的数据资料。这部分的操作是在 Matlab 软件中实现的,其中所使用的编程代码参考 Elhorst 和 Lesage 等人提供的相关信息 。 本文选取对外贸易总额作为因变量,选取以下七个因素作为自变量,分别是 :人均 GDP水平,主要反映样本地区的经济发展水平;实
28、际利用外资金额,主要反映样本地区的对外开放程度;高等教育在校生人数,主要反映出样本地区的教育发展程 度;政府支出占 GDP比重,主要反映出样本地区政府对经济的干预程度和当地的市场化程度;第二产业就业人员占全部就业人员比重,可以反映出当地的产业结构情况和工业化程度;专利申请受理数,可以从一定程度上反映出该地区的科技进步情况;公路里程占全国总里程的比重,则是反映出该地区的交通运输情况。 因变量、自变量及其数据定义如表 3所示: ( 2)计量分析及其结果。本文对两个模型进行分析:一是包括全国 30 省份在内的模型,以此从整体角度分析对外贸易的影响因素;二是为了能够更清楚地了解我国不同区域内各省市对外
29、贸易影响因素的差异 ,方便将其进行比较分析,本文将全国各省份分为东、西、中部三个地区分别就其相应样本进行分析。 模型一整体分析 由表 4中的模型估计结果,我们可以得出以下结论: 第一,由传统的固定效应模型以及引入空间效应的模型相比较,可以看出: 引入空间效应的模型比传统的模型能更好地解释各地区的对外贸易差异现象。原因是:一方面,就调整后的而言,传统模型中其值是最小的;另一方面,从空间自相关系数 p的显著性上来判断,除了在 SAR时间固定效应模型中是不显著的以外,在其他 5个模型中 p均通过了至少 5%的显著性水平的检验。因此,应 该在模型中引入空间效应的影响因素,也就是说某一省份的对外贸易量会
30、受到其相邻省份一些因素的影响。 分别比较 SAR模型以及 SEM模型中的三个相应模型可以发现,从综合调整后的以及对数似然值 Log-Likehood 来看,空间固定效应模型都是最好的,这说明在所选取的面板数据中存在的非观测效应主要属于个体间(空间上)的固定效应。这可能由两种原因导致:一方面,由于在这里我们所选取的面板数据属于短面板( Short Panel),就是说时间序列的个数( 15个)小于截面个体的数量( 30个),这可能会导致相对于时间方面的效应 来说,不同截面个体的效应更明显;另一方面,可能是由于在实际情况中,不同省份之间外贸水平的差异效应相对于时间序列变化所引起的差异效应来说更为突
31、出。 在两个空间固定效应模型中,的值分别达到了 0.977 以及 0.982,这说明两个模型对于所选取样本的解释程度很高;其次,再通过比较 SAR的空间固定效应模型以及 SEM 的空间效应模型的相应调整后的以及对数似然值Log-Likehood 两个指标可以发现,二者的解释效果比较接近,其中 SEM 模型稍高一些,这说明我国省份之间的空间相关性对于其各自贸易水平的影响既可以通过所选取 的七个解释变量来传递,同时也可以通过其他的一些因素(随机冲击)来传递,这可以从一定程度上证明对于各省份的对外贸易情况而言,其空间效应的影响作用是比较强的。 第二,根据模型估计的各解释变量的系数及其显著性水平,可以
32、看出: 各省份人均 GDP水平以及高等教育在校学生人数这两个解释变量在所有的模型中都通过了显著性水平为 1%的检验,并且其符号均为正;另外,政府支出占 GDP比重以及公路里程数占全国总里程数的比值这两个变量也都通过了至少 10%的显著性检验,并且符号同样为正,说明这四个变量对于各省份的对外贸易水平均有 显著的正向影响。另外,从系数绝对值上来看, Trans系数的绝对值最大,其实这与其他三个变量以及因变量都是对数形式也有关。 各省份实际利用外资金额这一指标除了在 SEM的空间固定效应中没有表现出显著性以外,在其他所有的模型中都通过了 1%的显著性水平的检验,并且其符号为正,这从一定程度上也证明了
33、 FDI对于外贸水平具有显著的正向影响作用,即 FDI 与对外贸易之间的互补效应大于替代效应。 各省份第二产业从业人员占全部就业人员比重以及专利申请受理数这两个指标也表现出一定的显著性,但是 ,在不同的模型中所表现出的符号 方向却是不同的。需要注意的是,虽然这两个变量通过了大多数的显著性检验,但是就其系数的绝对值大小来看,其影响程度是比较小的。 从全国 30 个省份的整体来看,空间效应比较明显,人均 GDP 水平、高等教育在校学生人数、政府支出占 GDP比重、公路里程数占全国总里程数的比值、实际利用外资金额等变量对各省份对外贸易的发展均有显著的正向影响,第二产业从业人员占全部就业人员比重、专利
34、申请受理数等变量对各省份对外贸易的发展影响方向和程度不确定。 模型二分区域模型 本文将全国的省份分为东部、中部和西部三个地区,其中东部地区包 括 11个省份,中部地区包括 8 个省份,西部地区包括有 11 个省份,相应的空间计量分析结果分别如表 5、表 6、表 7所示。 由以上三个模型的估计结果比较,我们大致可以得出以下结论: 第一,与全国 30 省份分析得出的结果一样,引入了空间效应的模型相对于传统的模型来说解释力更强,而且在所有的空间模型中,空间固定效应的模型比时间固定效应模型更好,其分别对应的空间滞后模型和空间误差模型之间差异并不大,两个都有很强的解释力。 与全国 30 省份的分析相比,
35、可以看出以下两点:一是所有的结果都显示空间滞后模型以及空间误差模型之 间的差异并不大,而且都具有较好的拟合水平,这说明空间效应通过解释变量以及误差项两个途径影响因变量(对外贸易水平)。二是在将全国的省份分为东部、中部、西部三个区域之后,模型估计结果仍然显示,空间固定效应模型的解释力要强于相应的时间固定效应模型,如果说在之前的全国 30 省份的模型中,这个问题可能是由于短面板所引起的话,那么对于这三个分区域模型来说就没有办法这样解释了,因为这三个模型很显然不属于短面板情形,所以我们可以得出以下结论,即相对于时间序列变化引起的非观测效应而言,我国各省份之间的个体差异所引起的非观测效应 更为显著。 第二,从各个解释变量的系数及其显著性来看,我们可以看到,不同地区之间存在着一定的共性以及差异性。 基本上在所有的模型中,各省份人均 GDP水平以及高校在校学生人数两个解释变量都是显著的,且系数均为正,这与我们之前所预期的结果是相符的,从一定程度上证明了教育水平(高等教育水平)的提高对于该地区对外贸易发展具 有重要作用。