数学应用性问题数学应用性问题是历年高考命题的主要题型之一, 也是考生失分较多的一种题型. 高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.例1某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室。据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?讲解: 引入字母,转化为递归数列模型.设第n次去健身房的人数为an,去娱乐室的人数为bn,则.,于是即 .故随着时间的推移,去健身房的人数稳定在100人左右.上述解法中提炼的模型, 使我们联想到了课本典型习题(代数下册P.132第34题)已知数列的项满足 其中,证明这个数列的通项公式是有趣的是, 用此模型可以解决许多实际应用题, 特别, 2002年