1. R语言卡方检验皮尔森拟合优度塔防检验。假设H0:总体具有某分布F 备择假设H1:总体不具有该分布。我们将数轴分成若干个区间,所抽取的样本会分布在这些区间中。在原假设成立的条件下,我们便知道每个区间包含样本的个数的期望值。用实际值Ni 与期望值Npi可以构造统计量K 。皮尔森证明,n趋向于无穷时,k收敛于m-1的塔防分布。m为我们分组的个数。有了这个分布,我们就可以做假设检验。#如果是均匀分布,则没有明显差异 。这里组其实已经分好了,直接用 。H0:人数服从均匀分布 x n - sum(x); m p K p - 1-pchisq(K,m-1); p #计算出p值1 0 #拒绝原假设。在R语言中 chisq.test(),可以完成拟合优度检验。默认就是检验是否为均匀分布,如果是其他分布,需要自己分组,并在参数p中指出
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。