百科名片 圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0e1时为双曲线。圆锥曲线的由来两千多年前,古希腊数学家最先开始研究圆锥曲线,并且获得了大量的成果。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。事实上,阿波罗尼在其著作中使用纯几何方法已经取得了今天高中数学中关于圆锥曲线的全部性质和结果。 定义几何观点用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线。 通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。具体而言: 1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。 2) 当平面与圆锥面的母线平行,且过圆锥