最小二乘估计教学目标:1、掌握最小二乘法的思想 2、能根据给出的线性回归方程系数公式建立线性回归方程教学重点:最小二乘法的思想教学难点:线性回归方程系数公式的应用教学过程回顾:上节课我们讨论了人的身高与右手一拃长之间的线性关系,用了很多种方法来刻画这种线性关系,但是这些方法都缺少数学思想依据。问题1、用什么样的线性关系刻画会更好一些?想法:保证这条直线与所有点都近(也就是距离最小)。最小二乘法就是基于这种想法。问题2、用什么样的方法刻画点与直线的距离会方便有效?设直线方程为y=a+bx,样本点A(xi,yi)方法一、点到直线的距离公式 方法二、显然方法二能有效地表示点A与直线y=a+bx的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度。问题3、怎样刻画多个点与直线的接近程度?例如有5个样本点,其坐标分别为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)与直线y=a+bx的接近程度: 从而我们可以推广到n个样本点: