【专题八】数形结合的思想【考情分析】纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 巧妙的运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。其思想思维与方法也是高考中重点考察的思维能力之一。【知识交汇】1、知识要点概述数与形是数学中和两个最古老的,也是最基本的对象,是数学中两个最古老、最基本的问题,是数学大厦深处的两块基石,数学的所有问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系常常又可以通过图形的直观性作出形象的描述.因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,揭示其几何意义,而形的问题借助数去思考,分析其代数含义,使数量关系和空间形式巧妙机智地结合越来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,简言之,就是把数学问题中的数量关系和