一、知识网络:函数与映射1.函数的概念一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个(任意性)元素x,在集合B中都有(存在性)唯一(唯一性)的元素y和它对应,这样的对应叫做集合A到集合B的一个函数(三性缺一不可)函数的本质:建立在两个非空数集上的特殊对应这种“特殊对应”有何特点:1).可以是“一对一” 2).可以是“多对一” 3).不能“一对多” 4). A中不能有剩余元素 5).B中可以有剩余元素判断两个函数相同:只看定义域和对应法则2.映射的概念一般地,设A、B是两个集合,如果按某一个确定的对应关系f,使对于集合A中的每一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:为从集合A到集合B的一个映射(mapping)。思考:映射与函数区别与联系?函数建立在两个非空数集上的特殊对应映射建立在两个非空集合上的特殊对应1)函数是特殊的映射,是数集到数集的映射2)映射是函数概念的扩展,映射不一定是函数3)映射与函数都是特殊的对应二、课堂练习:考点一