第一章 系统描述1.1 引言一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。本文将主要涉及控制系统的基于状态空间的描述、分析与设计部分。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MATLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的