难点35 导数的应用问题利用导数求函数的极大(小)值,求函数在连续区间a,b上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用.难点磁场()已知f(x)=x2+c,且ff(x)=f(x2+1)(1)设g(x)=ff(x),求g(x)的解析式;(2)设(x)=g(x)f(x),试问:是否存在实数,使(x)在(,1)内为减函数,且在(1,0)内是增函数.案例探究例1已知f(x)=ax3+bx2+cx(a0)在x=1时取得极值,且f(1)=1.(1)试求常数a、b、c的值;(2)试判断x=1是函数的极小值还是极大值,并说明理由.命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入.是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解.属级题目.知识依托:解题的成功要靠正确思路的