有理数混合运算方法技巧.doc

上传人:99****p 文档编号:1386732 上传时间:2019-02-23 格式:DOC 页数:8 大小:123KB
下载 相关 举报
有理数混合运算方法技巧.doc_第1页
第1页 / 共8页
有理数混合运算方法技巧.doc_第2页
第2页 / 共8页
有理数混合运算方法技巧.doc_第3页
第3页 / 共8页
有理数混合运算方法技巧.doc_第4页
第4页 / 共8页
有理数混合运算方法技巧.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、1有理数混合运算的方法技巧怀宁县独秀初中 汪邢志有理数的混合运算是加、减、乘、除、乘方的综合应用,既复习旧知识,又为今后的学习打下基础,对这一单元的知识一定要学好,用活,切实掌握运算法则、运算律、运算顺序。有理数的混合运算的关键是运算的顺序,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算速度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜券

2、。单元学习目标1进一步掌握有理数的运算法则和运算律。2能够熟练地按有理数运算顺序进行混合运算,并会用运算律简化运算。 。3能用计算器进行较繁杂的有理数混合运算,注意培养自己的运算能力及综合运用知识解决问题的能力。二、理解运算顺序有理数混合运算的运算顺序:从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键 例 1:计算:3502 2( )15解:原式= (先算乘方)= (化除为乘)= (先定符号,再算绝对值)从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例 2:计算: 2315.01解原式=从左向右:同级运算

3、,按照从左至右的顺序进行;例 3:计算: 23)(9422三、应用四个原则:1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。 2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。4、分段同时性原则: 对一个算式,一般可以将它分成若干小段,同时分别进行运算。如何分段呢?主要有:(1)运算符号分段法。有理数的基本运算有五种:加、

4、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。在运算中,低级运算把高级运算分成若干段。 一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和 把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法(2)括号分段法,有括号的应先算括号里面的。在实施时可同时分别对括号内外的算式进行运算。(3)绝对值符号分段法。绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因

5、此绝对值符号也可以把算式分成几段,同时进行计算(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。例 4 计算:-0.25 2( )4-(-1)2009(-2) 2(-3)212解:说明:本题以加号、减号为界把整个算式分成三段,这三段分别计算出来的结果再相加。四、掌握运算技巧(1) 、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。(2) 、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。(3) 、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。(4) 、约简:将互为倒数的数或有倍数关系的数约简。

6、(5) 、倒序相加:利用运算律,改变运算顺序,简化计算。(6) 、裂项相消法:凡是带有省略号的分数加减运算,可以用这种方法例 5 计算 2+4+6+2000分析:将整个式子记作 S=2+4+1998+2000将这个式子反序写出得S=2000+1998+4+2,两式相加,再作分组计算3例 6 计算 + + +2134120871分析: 千万别硬做,繁琐难算又易错!若想到通分,这道题将无法计算,这道题的规律是:=1 , = , = , = 由于中间的各项342087172081一正一负,相加后都抵消了,只剩下首项和末项,这样问题就迎忍而解了(6) 、正逆用运算律:正难则反, 逆用运算定律以简化计算

7、。乘法分配律 a(b+c)=ab+ac 在运算中可简化计算而反过来,ab+ac=a(b+c)同样成立,有时逆用也可使运算简便.例 3 计算:(1) -32 (-84)+2.52+( + )241625 1223 34 1112(2)( )( ) ( ) ( )32 1115 32 1315 32 1415分析 : -32 化成假分数较繁,将其写成(-32 )的形式对( + )24,则以1625 1625 1223 34 1112使用乘法分配律更为筒捷,进行有理数混合运算时,要注意灵活运用运算律,以达到筒化运算的目的五、理解转化的思想方法有理数运算的实质是确定符号和绝对值的问题。有理数的加减法互

8、为逆运算,有了相反数的概念以后,加法和减法运算都可以统一为加法运算其关键是注意两个变:(1)变减号为加号;(2)变减数为其相反数。另外被减数与减数的位置不变例如(-12)-(+18)+(-20)-(-14)有理数的乘除也互为逆运算,有了倒数的概念后,有理数的除法可以转化为乘法。转化的法则是:除以一个数,等于乘以这个数的倒数。乘方运算,根据乘方意义将乘方转化为乘积形式,进而得到乘方的结果(幂)。因此在运算时应把握“遇减化加遇除变乘,乘方化乘” ,这样可避免因记忆量太大带来的一些混乱,同时也有助于学生抓住数学内在的本质问题。总之,要达到转化这个目的,起决定作用的是符号和绝对值。把我们所学的有理数运

9、算概括起来。可归纳为三个转化:一个是通过绝对值将加法、乘法在先确定符号的前提下,转化为小学里学的算术数的加法、乘法;二是通过相反数和倒数分别将减法、除法转化为加法、乘法;三是将乘方运算转化为积的形式若掌握了有理数的符号法则和转化手段,有理数的运算就能准确、快速地解决了4例计算: (1) (-6)-(+5)+(-9)+(-4)-(-9)(2) (-2 )1 (-4)12 14(3)22+(2-5) 1-(-5)213解:六、会用三个概念的性质如果 ab 互为相反数,那么 a+b=O,a= -b;如果 c,d 互为倒数,那么 cd=l,c=1/d;如果|x|=a(a0),那么 x=a 或-a.例

10、6 已知 a、b 互为相反数,c、d 互为倒数,x 的绝对值等于 2,试求 x2-(a+b+cd)x+(a+b)2010+(-cd)2011的值 解: 5有理数混合运算专项练习1、8( )5(0.25) 2、82+723643、7 1 (919) 4、25 (25) 25( )24 32145、( 81)2 (16) 6、(1) 3(1 )32(3) 2419 2167、 8、32)(61 81432)50(31759、 10、482387651 723573257411、 12、61987 2784138713、 14、)2(21332314.014321715、 16、2312156 2153123417、 18、(3) 2(3) 32 2(2) 24163524 819、 223 13510120、 24331216

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。