三角形“四心”向量形式的充要条件应用(修正稿)衡阳县三中 刘仲生湖南祁东育贤中学 周友良 在学习了平面向量一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下:一 知识点总结1)O是的重心;若O是的重心,则故;为的重心.2)O是的垂心;若O是(非直角三角形)的垂心,则故3)O是的外心(或)若O是的外心则故4)O是内心的充要条件是引进单位向量,使条件变得更简洁。如果记的单位向量为,则刚才O是内心的充要条件可以写成 O是内心的充要条件也可以是若O是的内心,则故;的内心;向量所在直线过的内心(是的角平分线所在直线);二 范例(一)将平面向量与三角形内心结合考查ACBCCP例1O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P点的轨迹一定通过的( )(A)外心(B)内心(C)重心(D)垂心
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。