第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。7.1 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为 pqy0 (7.1) 其中p、q是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y1,y就可以了,下面讨论这样两个特解的求法。我们先分析方程(7.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是,y各乘以常数因子后相加等于零,如果能找到一个函数y,其,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数erx,符合上述要求,于是我们令 yerx(其中r为待定常数)来试解将yerx,rerx,r2erx代入方程(7.1)得
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。