最优化方法一、引言最优化理论与方法是一门应用性很强的年轻学科。它研究某些数学上定义的问题的最优解,即对于给出的实际问题,从众多的方案中选出最优方案。 虽然最优化可以追朔到十分古老的极值问题,然而,他成为一门独立的学科诗在上世纪40年代末,是在1947年Dantzing提出求解一般线性规划问题的单纯型法之后。现在,解线性规划、非线性规划以及随机规划、非光滑规划、多目标规划、几何规划、整数规划等各种最优化问题的理论的研究发展迅速,新方法不断出现,实际应用日益广泛。在电子计算机的推动下,最优化理论与方法在经济计划、工程设计、生产管理、交通运输等方面得到了广泛应用,成为一门十分活跃的学科。 现在大多数有代表性的最优化算法已有可以方便使用的软件包,如lindolingo优化软件包。但有效利用这些成果是以有待解决的问题已被模型化成最优化问题的形式为前提的。要做到这点,要有深刻的洞察力和综合能力,这需要掌握最优化算法的结构和特点,并与专业知识的结合和兼蓄。 最优化有着丰富的内容和方法,本课我们主要介绍线性规和非线性规划的主要方法与理论他们是最优化理论的重要分支,也是最