数学奥赛辅导 第四讲 不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1几类不定方程(1)一次不定方程在不定方程和不定方程组中,最简单的不定方程是整系数方程通常称之为二元一次不定方程.一次不定方程解的情况有如下定理.定理一:二元一次不定方程为整数.有整数解的充分必要条件是. 定理二:若为之一解,则方程全部解为. (t为整数)。(2)沛尔方程形如(,不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设为该方程的正整数解中使最小的解,则其的全部正整数解由()给出. 只要有解,就可以由通解公式给出方程的无穷多组解.满足的关系:; , (3)勾股方程这里只讨论勾股方程的正整数解,只需讨论满足的解,此时易知实际上两两互素. 这种两两互素的正整数解称为方程的本原解,也称为本原的勾股数。容易看出一奇一偶,无妨设为偶数,下面的结果勾股方程的全部本原解通解公式。定理三:方程满足,的全