初等数论中的欧拉定理定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则 a(n) 1 (mod n) 证明首先证明下面这个命题: 对于集合Zn=x1,x2,.,x(n),其中xi(i=1,2,(n)是不大于n且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = a*x1(mod n),a*x2(mod n),.,a*x(n)(mod n) 则S = Zn 1) 由于a,n互质,xi也与n互质,则a*xi也一定于n互质,因此 任意xi,a*xi(mod n) 必然是Zn的一个元素 2) 对于Zn中两个元素xi和xj,如果xi xj 则a*xi(mod n) a*xj(mod n),这个由a、n互质和消去律可以得出。 所以,很明显,S=Zn 既然这样,那么 (a*x1 a*x2.a*x(n))(mod n) = (a
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。