1 矩阵及其运算教学要求 : 理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点 :一、矩阵的基本概念矩阵,是由 个数组成的一个 行 列的矩形表格,通常用大写字母 表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素 表示,其中下标 都是正整数,他们表示该元素在矩阵中的位置。比如, 或 表示一个 矩阵,下标 表示元素 位于该矩阵的第 行、第 列。元素全为零的矩阵称为零矩阵。 特别地,一个 矩阵 ,也称为一个 维列向量;而一个 矩阵 ,也称为一个 维行向量。 当一个矩阵的行数 与烈数 相等时,该矩阵称为一个 阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个 阶方阵的主对角线上的元素都是 ,而其余元素都是零,则称为单位矩阵,记为 ,即: 。如一个 阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个 阶下三角矩阵,而 则是一个 阶上三角矩阵。今