第一讲 一阶微分方程组及解的存在惟一性定理(2课时)一、 目的与要求: 了解高阶微分方程与一阶微分方程组的等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理.二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理.三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质.四、教学方法:讲练结合法、启发式与提问式相结合教学法.五、教学手段:传统板书与多媒体课件辅助教学相结合.六、教学过程:1 课题引入在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质.例如,已知在空间运动的质点的速度与时间及该点的坐标的关系为且质点在时刻经过点,求该质点的运动轨迹。因为和, 所以这个问题其实就是求一阶微分方程组的满足初始条件 的解.另外,在n阶微分方程(1.12)中,令就可以把它化成等价的一阶微分方程组注意,这是