第八章 能量原理及其应用 弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有15个未知量的6个偏微分方程,在给定边界条件时求解是极其困难的,而且往往足小对能的。因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。这些解法的依据都是能量原理。本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。 本章共讨论五个能量原理。首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。另外,还简单介绍最大耗散能原理。本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。8.1 基本概念1.1 物体变形的热力学过程由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。如果物体在变形过程中,各点的温度与其周