平面法向量与立体几何 引言:平面的法向量在课本上有定义,考试大纲中有“理解”要求,但在课本和多数的教辅材料中都没有提及它的应用,其实平面的法向量是中学数学中的一颗明珠,是解立体几何题的锐利武器。本文介绍平面法向量的二种求法,并对平面法向量在高中立体几何中的应用作归纳和总结。开发平面法向量的解题功能,可以解决不少立体几何中有关角和距离的难题,使高考立体几何中求空间角、求空间距离、证明垂直、证明平行等问题的解答变得快速而准确,那么每年高考中那道12分的立体几何题将会变得更加轻松。 2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面的法向量或,或,在平面内任找两个不共线的向量。由,得且,由此得到关于的方程组,解此方程组即可得到。二、平面法向量的应用1、 求空间角(1)、求线面角:如图4-1,设是平面的法向量,AB是平面的一条斜线,则AB与平面所成的角为:例3、 在例2中,求直线与平面所成的角。解析:由例2知,即(2)、求面面角:设向量,分别是平面、的法向量,则二面角的平面角为:(图5-1); (图