巧用基向量解立体几何题(海南省琼海市长坡中学 王萧)摘 要:利用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系往往受到图形的制约,很难在立体几何问题中普遍使用,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法。关键词:基向量、基底建模法、自由性向量是高中数学新教材中一项基本内容,它的引入有利于处理立体几何问题,有利于学生克服空间想象力的障碍和空间作图的困难,有利于丰富学生的思维结构,利用空间向量的坐标运算解立体几何问题,可把抽象的几何问题转化为代数计算问题,并具有很强的规律性和可操作性, 而利用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系往往受到图形的制约,很难在立体几何问题中普遍使用,其实向量的坐标形式只是选取了特殊的基底,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法, 它是利用向量的非坐标形式解立体几何问题的一种有效方法,并且应用广泛