1、“函数的概念”教学设计南京师大附中 陶维林一、内容和内容解析“函数”是中学数学的核心概念在初中,学生已经学习过函数概念初中建立的函数概念是:一般地,在一个变化过程中,如果有两个变量 x 与 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么,我们就说 y 是 x 的函数其中 x 称为自变量这个定义从运动变化的观点出发,把函数看成是变量之间的依赖关系从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制如果只根据变量
2、观点,那么有些函数就很难进行深入研究例如对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出 x 的物理意义是什么但用集合、对应的观点来解释,就十分自然进入高中,学生需要建立的函数概念是:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:AB 为从集合 A 到集合 B 的一个函数,记作yf(x),xA 其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合 f(x)| xA 叫做函数的值域这个概念与初中概念相比更具有一般性实
3、际上,高中的函数概念与初中的函数概念本质上是一致的不同点在于,表述方式不同高中明确了集合、对应的方法初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点与初中相比,高中引入了抽象的符号 f(x )f(x)指集合 B 中与 x 对应的那个数当 x 确定时, f(x)也唯一确定另外,初中并没有明确函数值域这个概念函数概念的核心是“对应”,理解函数概念要注意:两个数集间有一种确定的对应关系 f,即对于数集 A 中每一个 x,数集 B 中都有唯一确定的 y 和它对应涉及两个数集 A,B,而且这两个数集都非空;这里的关键词是“每一个”“唯一确定”也就是,对于集合 A 中的
4、数,不能有的在集合 B 中有数与之对应,有的没有,每一个都要有而且,在集合 B 中只能有一个与其对应,不能有两个或者两个以上与其对应函数概念中涉及的集合 A,B,对应关系 f 是一个整体,是集合 A 与集合 B 之间的一种对应关系,应该从整体的角度来认识函数二、目标和目标解析(1)通过丰富实例,建立函数概念的背景,使学生体会函数是描述变量之间的依赖关系的重要数学模型能用集合与对应的语言来刻画函数,了解构成函数的三个要素(2)会判断两个函数是否为同一函数,会求一些简单函数的定义域和值域(3)通过从实例中抽象概括函数概念的活动,培养学生的抽象概括能力教学的重点是,在研究已有函数实例(学生举出的例子
5、)的过程中,感受在两个数集A,B 之间所存在的对应关系 f,进而用集合、对应的语言刻画这一关系,获得函数概念然后再进一步理解它三、教学问题诊断分析(1)对函数概念中的“每一个”、“唯一确定”等关键词关注不够,领会不深教学中,可以通过反例让学生加以认识比如有一位学生的考试情况是这样的集合 A1 ,2 ,3,4,5,6,B90,93,98,92 ,f:每次考试成绩就不能表示一个函数因为对于集合 A 中的元素“4”,在集合 B 中就没有元素与它对应(2)忽视“数集”二字,把一般的映射关系理解为函数比如高一(2)班的同学组成集合 A,教室里的座椅组成集合 B,每一位同学都有唯一的一个座椅,班上还有空椅
6、子这能否算作一个函数的例子,为什么?(3)对为什么集合 B 不是函数的值域不理解让学生感受到,有时,为了研究方便或者确定一个函数的值域暂时有困难,使得 Cf(x )|xA B 更加合理(4)当函数关系具有解析式表示时,f(x )当然可以用 x 的解析式表示出来学生会因此而误以为对应关系 f 都可以用解析式表示可以通过所举实例的类型,引导学生,明确表示对应关系 f 并非解析表达式不可但这不是本节课的重点,应该放在下一节课“函数的表示”中解决只要注意所列举的例子不光是有解析式的即可(5)本课的难点是:对抽象符号 y f(x)的理解可以通过具体函数让学生理解抽象的 f(x )比如函数f(x)x 2,
7、A x|2x2 f( 1)1,f(1.5)2.25,f( 2)4,f(2)无定义f (x)x 2,xA最终,让学生明白,f(x )是集合 B 中的一个数,是与集合 A 中的 x 对应的那个数当 x 取具体数字时,f( x)也是一个具体的数四、教学基本流程 五、教学过程设计1用集合、对应定义函数问题 1 同学们在初中已经学习过“函数”,请你举几个函数的具体例子设计意图:通过具体例子,让学生回顾初中学习过的函数概念,把握内涵教师根据所举例子的具体情况,引导学生列举分别用解析式、图象、表格表示对应关系的函数如果学生所列举的例子都是用解析式表示的,教师则问:“函数关系都是可以用解析式表示的吗?”引导学
8、生开阔思路,再列举些用图象、表格表示对应关系的函数教师可以举例(教科书第 15 页的例 2)例 1 图 1 的兰色曲线记录的是 2009 年 2 月 20 日自上午 9:30 至下午 3:00 上海证券交易所的股票指数的情况股票指数是时间的函数吗?图 1例 2 国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高下表中恩格尔系数随时间的变化而变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化城镇居民的恩格尔系数(%)是时间(年)的函数吗?教师也可以参与举例(例 3,备用),以说明函数概念中的 x 的取值范围构成一个集合,对应关系、以及 y 的取值
9、构成的集合例 3 (教科书第 15 页例 1)一枚炮弹发射后,经过 26s 落到地面击中目标炮弹的射高为 845m,且炮弹距地面高度 h(单位:m )随时间 t(单位:s)变化的规律是h130t5t 2(*)炮弹距地面高度 h 是时间 t 的函数吗?为什么?教师利用教科书第 15 页例 1 中的函数图象(图 2)解释:随着点 P 位置的改变,点 P 的横坐标 x 与纵坐标 y 都在变化,但无论点 P 在哪个位置,点 P 的横坐标 x 总对应唯一的纵坐标 y由此,使学生体会到,函数中的函数值 y 的变化总是依赖于自变量 x 的变化,而且由 x 的值唯一确定图 2炮弹飞行时间 t 的变化范围是数集
10、 A=t|0t 26 ,炮弹距地面的高度的变化范围是数集 B=h|0h 845,从问题的实际意义可知,对于数集 A 中的任意一个时间 t,按照对应关系(*),在数集 B 中都有唯一确定的高度 h 和它对应在学生举例后,与学生共同研究问题 2问题 2 你凭什么说,你举出的例子表示一个函数呢?请说给我们大家听听大家也思考一下,他们所举的是函数的例子吗?为什么?设计意图:让举例的同学分别解释他们所举例子的含义,为什么用这个例子来说明函数挖掘背后的思维过程,暴露学生对函数本质的理解状况函数是初中已有过的内容,引导学生用初中的定义解释所列举的例子,可以了解学生对函数概念的掌握情况突出“两个变量 x,y”
11、,对于变量 x 的“每一个”确定的值,另一个变量 y 有“ 唯一”确定的值与 x 对应,“y 是 x 的函数 ”并要求学生指出对应关系 f是什么?x 取哪些数?即取值范围,感受数集 A 的存在,y 值的构成情况,为引入两个集合做准备问题 3 前面我们学习了“集合”,你能用“集合”以及对应的语言刻画函数概念吗?设计意图:引导学生把初中学习过的函数概念与高一刚学习的过的集合知识联系起来,用集合的观点解释过去的概念,获得对函数概念的新认识获得新的函数定义方式:设 A,B 是两个非空数集如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中有唯一确定的数 f(x)和它对应,
12、那么就称对应f:AB为集合 A 到集合 B 的一个函数,记作yf(x),xA 其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合f(x)| xA叫做函数的值域若 Cf(x) | xA ,则 C B师生共同就每一个例子,找出集合 A,B 分别是什么,对应关系 f 指什么?突出“三要素”问题 4 在这个定义中,你认为哪些是关键词?怎样理解这个概念呢?设计意图:促使学生抓住概念中的关键词,多方面理解概念,抓住本质同时,指出函数的要素为定义域、对应关系、值域由于对于一个函数,当定义域确定、对应关系确定后,值域也随之确定,因此,两个函数相等的
13、条件是定义域以及对应关系相同2认识函数的定义域,值域,对应关系小练习:(1)填写下列表格: (2)能否说 f(x )x 24x 是实数集 R 到实数集 R 的函数?(3)已知函数 f(x )求f( );f(x4)的定义域;(4)下列函数中哪个是与 yx 相同的函数,为什么?y() 2; y () 3; y(); y 你能否举一个看起来相似,实质是两个不同的函数的例子设计意图:感受定义域的重要性,体验函数的三个要素两函数相同,当且仅当三要素相同 再问:你举这个例子想说明什么?3介绍区间的概念在研究函数时,常常需要表示它的定义域、值域这些实数的集合我们把集合x|ax b 写成a,b ,即 x|ax
14、b a,b a,b 称为左闭右开的区间以下教师问学生该如何表示,叫做什么区间(不是教师直接告诉):x|ax b 写成a,b,称为闭区间x|ax b 写成(a,b),称为开区间x|ax b 写成 a,b ,称为右闭左开的区间实数 a,b 都叫做区间的端点实数集 R 可以用区间表示为( ,)x| x a 可以用区间表示为 a, , x| xa 可以用区间表示为( a,);x| x a 可以用区间表示为(,a , x| xa 可以用区间表示为(,a)区间可以用数轴上的点表示问:若有人问“你区间什么?”你怎么回答?区间是实数的集合4练习(1)教科书第 19 页“练习”(2)教科书第 24 页,习题 1.2,A 组,第 2 题尽可能在课堂上处理,少留课后作业5小结通过本节课的学习,你主要有哪些收获?学习了函数概念的新解释:函数是两个集合非空数集 A,B 之间的对应,对于集合 A中的每一个数,按照对应关系 f,在集合 B 中有唯一的数 f(x)与之对应函数的值域不一定就是集合 B函数不一定非用解析式表示,等6课后作业教科书第 24 页,习题 1.2,A 组,第 1,3,4 题