第二章 结构分析的有限元法 2.1 有限元法发展简况 利用定义在三角形区域上的分片连续函数和最小位能原理St.Venant扭转问题的近似解有限元法的研究现代有限元法飞机结构分析1943Courant应用数学家、物理学家、工程师1960Tumer、Clough第一次成功尝试第一次用三角形单元 平面应力问题解答提出了有限单元法的名称各种非线性问题多物理场耦合问题多尺度问题商品化有限元软件 20世纪70年代国外几何非线性:因几何变形引起结构刚度改变材料非线性:弹性(超弹和多线性弹性)、粘弹性、非弹性状态非线性:接触问题2.1 有限元法发展简况 固体力学流体力学传热学电磁学学科应用力学计算结构优化计算功能计算技术纯粹数值技术前、后处理技术的高度智能化和与CAD的集成化2.2 有限元法的基本思路及其求解步骤 经典的解析法 从连续体的微分方程入手,寻求满足微分方程和定解条件的适合全域的解析解,一旦得到解析解,就可知道域内任意点的解大多数问题,特别是实际问题 很难甚至无法用解析法得到问题的解析解在整个求解域上满足控制方程在边界上满足边界条件的场函数寻找很困难有限元法单元节点有限元模型2.2 有限元法