1、植物生理学课后习题答案第一章 植物的水分生理(重点) 水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得商。 渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。 压力势:指细胞的原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,与引起富有弹性的细胞壁产生一种限制原生质体膨胀的反作用力。 质外体途径:指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。 共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。 渗透作用:水分从水势高的系统通过半透膜向水势低的
2、系统移动的现象。 根压:由于水势梯度引起水分进入中柱后产生的压力。 蒸腾作用:指水分以气体状态,通过植物体的表面(主要是叶子) ,从体内散失到体外的现象。 蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。 蒸腾比率:光合作用同化每摩尔 CO2 所需蒸腾散失的水的摩尔数。 水分利用率:指光合作用同化 CO2 的速率与同时蒸腾丢失水分的速率的比值。 内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。 水分临界期:植物对水分不足特别敏感的时期。1.将植物细胞分别放在纯水和 1mol/L 蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?答:
3、在纯水中,各项指标都增大;在蔗糖中,各项指标都降低。2.从植物生理学角度,分析农谚“有收无收在于水”的道理。答:水,孕育了生命。陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”环境条件。植物的一切正常生命活动,只有在一定的细胞水分含量的状况下才能进行,否则,植物的正常生命活动就会受阻,甚至停止。可以说,没有水就没有生命。在农业生产上,水是决定收成有无的重要因素之一。水分在植物生命活动中的作用很大,主要表现在 4 个方面: 水分是细胞质的主要成分。细胞质的含水量一般在 7090%,使细胞质呈溶胶状态,保证了旺盛的代谢作用正常进行,如根尖、茎尖。如果含水量减少,细胞质便变成凝胶状态,生
4、命活动就大大减弱,如休眠种子。 水分是代谢作用过程的反应物质。在光合作用、呼吸作用、有机物质合成和分解的过程中,都有水分子参与。 水分是植物对物质吸收和运输的溶剂。一般来说,植物不能直接吸收固态的无机物质和有机物质,这些物质只有在溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输,也要溶解在水中才能进行。 水分能保持植物的固有姿态。由于细胞含有大量水分,维持细胞的紧张度(即膨胀) ,使植物枝叶挺立,便于充分接受光照和交换气体。同时,也使花朵张开,有利于传粉。3.水分是如何跨膜运输到细胞内以满足正常的生命活动的需要的? 通过膜脂双分子层的间隙进入细胞。 膜上的水孔蛋白形成水通道,造成植物细
5、胞的水分集流。植物的水孔蛋白有三种类型:质膜上的质膜内在蛋白、液泡膜上的液泡膜内在蛋白和根瘤共生膜上的内在蛋白,其中液泡膜的水孔蛋白在植物体中分布最丰富、水分透过性最大。4.水分是如何进入根部导管的?水分又是如何运输到叶片的?答:进入根部导管有三种途径: 质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。 跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。这三条途径共同作用,使根部吸收水分。根系吸水的动力是根压和蒸腾拉力。运输到
6、叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭? 保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大 40100%。 保卫细胞细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开
7、;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。6.气孔的张开与保卫细胞的什么结构有关? 细胞壁具有伸缩性,细胞的体积能可逆性地增大 40100%。 细胞壁的厚度不同,分布不均匀。双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。9.设计一个证明植物具有蒸腾作用的实验装置。10.设计一个测定水分运输速度的实验。第二章 植物的矿质营养(重点) 矿质营养:植物对矿物质的吸收、转运和同化。 大量元素:植物需要量较大的元素。 微量元素:植物需要量极微,稍多即发生毒害的
8、元素。 溶液培养:是在含有全部或部分营养元素的溶液中栽培植物的方法。 透性:细胞膜质具有的让物质通过的性质。 选择透性:细胞膜质对不同物质的透性不同。 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 被动运输:转运过程顺电化学梯度进行,不需要代谢供给能量。 主动运输:转运过程逆电化学梯度进行,需要代谢供给能量。 转运蛋白:包括两种通道蛋白和载体蛋白。通道蛋白:横跨两侧的内在蛋白,分子中的多肽链折叠成通道,内带电荷并充满水。载体蛋白:跨膜的内在蛋白,形成不明显的通道,通过自身构象的改变转运物质。 单向运输载体:能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。 同向运输器:指运输
9、器与质膜外的 H 结合的同时,又与另一分子或离子结合,同一方向运输。 反向运输器:指运输器与质膜外侧的 H 结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。 离子泵:膜内在蛋白,是质膜上的 ATP 酶,通过活化 ATP 释放能量推动离子逆化学势梯度进行跨膜转运。 生物固氮:某些微生物把空气中的游离氮固定转化为含氮化合物的过程。 诱导酶:是指植物本来不含某种酶,但在特定外来物质的诱导下生成的酶。 临界浓度:在营养元素严重缺乏与适量之间的浓度。是获得最高产量的最低养分浓度。 生物膜:细胞的外周膜和内膜系统。1.植物进行正常生命活动需要哪些矿质元素?如何用实验方法证明植物生长需这些元
10、素?答:分为大量元素和微量元素两种: 大量元素:C H O N P S K Ca Mg Si 微量元素:Fe Mn Zn Cu Na Mo P Cl Ni实验的方法:使用溶液培养法或砂基培养法证明。通过加入部分营养元素的溶液,观察植物是否能够正常的生长。如果能正常生长,则证明缺少的元素不是植物生长必须的元素;如果不能正常生长,则证明缺少的元素是植物生长所必须的元素。2.在植物生长过程中,如何鉴别发生缺氮、磷、钾现象;若发生,可采用哪些补救措施?缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低。补救措施:施加氮肥。缺磷:生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,开花期和
11、成熟期都延迟,产量降低,抗性减弱。补救措施:施加磷肥。缺钾:植株茎秆柔弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏死,缺绿开始在老叶。补救措施:施加钾肥。4.植物细胞通过哪些方式来吸收溶质以满足正常生命活动的需要?(一) 扩散1.简单扩散:溶质从高浓度的区域跨膜移向浓度较低的邻近区域的物理过程。2.易化扩散:又称协助扩散,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不需要细胞提供能量。(二) 离子通道:细胞膜中,由通道蛋白构成的孔道,控制离子通过细胞膜。(三) 载体:跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。1.单向运输载体:(uniport carrier)能催化分子或离
12、子单方向地顺着电化学势梯度跨质膜运输。2.同向运输器:(symporter )指运输器与质膜外的 H 结合的同时,又与另一分子或离子结合,同一方向运输。3.反向运输器:(antiporter)指运输器与质膜外侧的 H 结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。(四) 离子泵:膜内在蛋白,是质膜上的 ATP 酶,通过活化 ATP 释放能量推动离子逆化学势梯度进行跨膜转运。(五) 胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。7.植物细胞通过哪些方式来控制胞质中的钾离子浓度? 钾离子通道:分为内向钾离子通道和外向钾离子通道两种。内向钾离子通道是控制胞外钾离子进入
13、胞内;外向钾离子控制胞内钾离子外流。 载体中的同向运输器。运输器与质膜外侧的氢离子结合的同时,又与另一钾离子结合,进行同一方向的运输,其结果是让钾离子进入到胞内。8.无土栽培技术在农业生产上有哪些应用? 可以通过无土栽培技术,确定植物生长所必须的元素和元素的需要量,对于在农业生产中,进行合理的施肥有指导的作用。 无土栽培技术能够对植物的生长条件进行控制,植物生长的速度快,可用于大量的培育幼苗,之后再栽培在土壤中。10.在作物栽培时,为什么不能施用过量的化肥,怎样施肥才比较合理?过量施肥时,可使植物的水势降低,根系吸水困难,烧伤作物,影响植物的正常生理过程。同时,根部也吸收不了,造成浪费。合理施
14、肥的依据: 根据形态指标、相貌和叶色确定植物所缺少的营养元素。 通过对叶片营养元素的诊断,结合施肥,使营养元素的浓度尽量位于临界浓度的周围。 测土配方,确定土壤的成分,从而确定缺少的肥料,按一定的比例施肥。11.植物对水分和矿质元素的吸收有什么关系?是否完全一致?关系:矿质元素可以溶解在溶液中,通过溶液的流动来吸收。两者的吸收不完全一致相同点:两者都可以通过质外体途径和共质体途径进入根部。温度和通气状况都会影响两者的吸收。不同点:矿质元素除了根部吸收后,还可以通过叶片吸收和离子交换的方式吸收矿物质。水分还可以通过跨膜途径在根部被吸收。12.细胞吸收水分和吸收矿质元素有什么关系?有什么异同?关系
15、:水分在通过集流作用吸收时,会同时运输少量的离子和小溶质调节渗透势。相同点:都可以通过扩散的方式来吸收。都可以经过通道来吸收。不通电:水分可以通过集流的方式来吸收。水分经过的是水通道,矿质元素经过的是离子通道。矿质元素还可以通过载体、离子泵和胞饮的形式来运输。13.自然界或栽种作物过程中,叶子出现红色,为什么? 缺少氮元素:氮元素少时,用于形成氨基酸的糖类也减少,余下的较多的糖类形成了较多的花色素苷,故呈红色。 缺少磷元素:磷元素会影响糖类的运输过程,当磷元素缺少时,阻碍了糖分的运输,使得叶片积累了大量的糖分,有利于花色素苷的形成。 缺少了硫元素:缺少硫元素会有利于花色素苷的积累。 自然界中的
16、红叶:秋季降温时,植物体内会积累较多的糖分以适应寒冷,体内的可溶性糖分增多,形成了较多的花色素苷。14.植株矮小,可能是什么原因? 缺氮:氮元素是合成多种生命物质所需的必要元素。 缺磷:缺少磷元素时,蛋白质的合成受阻,新细胞质和新细胞核形成较少,影响细胞分裂,生长缓慢,植株矮小。 缺硫:硫元素是某些蛋白质或生物素、酸类的重要组成物质。 缺锌:锌元素是叶绿素合成所需,生长素合成所需,且是酶的活化剂。 缺水:水参与了植物体内大多数的反应。15.引起嫩叶发黄和老叶发黄的分别是什么元素?请列表说明。 引起嫩叶发黄的:S Fe,两者都不能从老叶移动到嫩叶。 引起老叶发黄的:K N Mg Mo,以上元素都
17、可以从老叶移动到嫩叶。 Mn 既可以引起嫩叶发黄,也可以引起老叶发黄,依植物的种类和生长速率而定。16.叶子变黄可能是那些因素引起的?请分析并提出证明的方法。 缺乏下列矿质元素:N Mg F Mn Cu Zn 。证明方法是:溶液培养法或砂基培养法。分析:N 和 Mg 是组成叶绿素的成分,其他元素可能是叶绿素形成过程中某些酶的活化剂,在叶绿素形成过程中起间接作用。 光照的强度:光线过弱,会不利于叶绿素的生物合成,使叶色变黄。证明及分析:在同等的正常条件下培养两份植株,之后一份植株维持原状培养,另一份放置在光线较弱的条件下培养。比较两份植株,哪一份首先出现叶色变黄的现象。 温度的影响:温度可影响酶
18、的活性,在叶绿素的合成过程中,有大量的酶的参与,因此过高或过低的温度都会影响叶绿素的合成,从而影响了叶色。证明及分析:在同等正常的条件下,培养三份植株,之后其中的一份维持原状培养,一份放置在低温下培养,另一份放置在高温条件下培养。比较三份植株变黄的时间。第三章 植物的光合作用(重点) 光合作用:绿色植物吸收阳光的能量,同化 CO2 和水,制造有机物质并释放氧气的过程。 吸收光谱:)经过叶绿素吸收后,在光谱上出现黑线或暗带。 荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色。 磷光现象:叶绿素在光照去掉光源后,还能继续辐射出极微弱红光的现象。 增益效应:红光和远红光协同作用而增加光和效率
19、的现象。 光反应:必须在光下才能进行的,由光引起的光化学反应。 碳反应:在暗处或光处都能进行的,由若干酶所催化的化学反应。 光和单位:由聚光色素系统和反应中心组成。 聚光色素:没有光化学活性,只有收集光能的作用,将光能聚集起来传给反应中心色素。包括绝大多数的色素。 原初反应:指光和作用中从叶绿素分子受光激发到引起第一个光化学反应为止的过程。 反应中心:是将光能转换为化学能的膜蛋白复合体。包括特殊状态的叶绿素 a。 希尔反应:在光照下,离体叶绿体类囊体能将含有高铁的化合物还原为低铁化合物并释放氧。 光和链:在类囊体摸上的 PSII 和 PSI 之间几种排列紧密的电子传递体完成电子传递的总轨道。
20、光和磷酸化:是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把 ADP 和磷酸合成为 ATP 的过程。 光和速率:单位时间、单位叶面积吸收 CO2 的量或放出 O2 的量,或者积累干物质的量。 同化力:由于 ATP 和 NADPH 用于碳反应中 CO2 的同化,把这两种物质合称为同化力。 卡尔文循环:(Calvin cycle)CO2 的受体是一种戊糖,CO2 的固定的出产物是一种三碳化合物。 C4 途径:CO2 固定最初的稳定产物是四碳化合物。 光抑制:光能超过光和系统所能利用的数量时,光和功能下降。 景天酸代谢途径:植物在夜间气孔开放,利用 C4 途径固定 CO2,形成苹果酸,贮
21、存在液泡中,白天气孔关闭,将夜间固定的 CO2 释放出来,再经 C3 途径固定 CO2 的过程。 光呼吸:植物的绿色细胞依赖光照,吸收 O2 和放出 CO2 的过程。 表观光合作用:没有把叶子的线粒体呼吸和光呼吸考虑在内的光和速率。 真正光和作用:表观光和作用+呼吸作用+光呼吸。 光饱和点:当达到某一光强度时,光和速率不再增加时的光强。 温室效应:大气层中的 CO2 能强烈的吸收红外线,太阳辐射的能量在大气层中就“易入难出” ,使得温度上升。 CO2 补偿点:当光和吸收的 CO2 量等于呼吸放出的 CO2 量,这时外界 CO2 含量。 光补偿点:同一叶子在同一时间内,光和过程中吸收的 CO2
22、与光呼吸和呼吸作用过程中放出的 CO2 等量时的光照强度。 光能利用率:指植物光合作用所积累的有机物所含的能量,占照射在单位地面上的日光能量的比率。1.植物光合作用的光反应和碳反应是在细胞的哪些部位进行的?为什么?答:光反应在类囊体膜(光合膜)上进行的,碳反应在叶绿体的基质中进行的。原因:光反应必须在光下才能进行的,是由光引起的光化学反应,类囊体膜是光合膜,为光反应提供了光的条件;碳反应是在暗处或光处都能进行的,由若干酶催化的化学反应,基质中有大量的碳反应需要的酶。2.在光合作用过程中,ATP 和 NADPH 是如何形成的?又是怎样被利用的?答:形成过程是在光反应的过程中。 非循环电子传递形成
23、了 NADPH:PSII 和 PSI 共同受光的激发,串联起来推动电子传递,从水中夺电子并将电子最终传递给 NADP+,产生氧气和 NADPH,是开放式的通路。 循环光和磷酸化形成了 ATP:PSI 产生的电子经过一些传递体传递后,伴随形成腔内外 H 浓度差,只引起 ATP 的形成。 非循环光和磷酸化时两者都可以形成:放氧复合体处水裂解后,吧 H 释放到类囊体腔内,把电子传递给 PSII,电子在光和电子传递链中传递时,伴随着类囊体外侧的 H 转移到腔内,由此形成了跨膜的 H 浓度差,引起 ATP 的形成;与此同时把电子传递到 PSI,进一步提高了能位,形成 NADPH,此外,放出氧气。是开放的
24、通路。利用的过程是在碳反应的过程中进行的。C3 途径:甘油酸-3-磷酸被 ATP 磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1 ,3-二磷酸,然后在甘油醛-3-磷酸脱氢酶作用下被 NADPH 还原,形成甘油醛-3-磷酸。C4 途径:叶肉细胞的叶绿体中草酰乙酸经过 NADP-苹果酸脱氢酶作用,被还原为苹果酸。C4 酸脱羧形成的 C3 酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化和 ATP 作用,生成 CO2受体 PEP,使反应循环进行。3.试比较 PSI 和 PSII 的结构及功能特点。PSII PSI位于类囊体的堆叠区,颗粒较大 位于类囊体非堆叠区,颗粒小由 12 种不同的多肽
25、组成 由 11 种蛋白组成反应中心色素最大吸收波长 680nm 反应中心色素最大吸收波长 700nm水光解,释放氧气 将电子从 PC 传递给 Fd含有 LHCII 含有 LHCI4.光和作用的氧气是怎样产生的?答:水裂解放氧是水在光照下经过 PSII 的放氧复合体作用,释放氧气,产生电子,释放质子到类囊体腔内。放氧复合体位于 PSII 类囊体膜腔表面。当 PSII 反应中心色素 P680 受激发后,把电子传递到脱镁叶绿色。脱镁叶绿素就是原初电子受体,而 Tyr 是原初电子供体。失去电子的 Tyr 又通过锰簇从水分子中获得电子,使水分子裂解,同时放出氧气和质子。6.光合作用的碳同化有哪些途径?试
26、述水稻、玉米、菠萝的光合碳同化途径有什么不同?答:有三种途径 C3 途径、C4 途径和景天酸代谢途径。水稻为 C3 途径;玉米为 C4 途径;菠萝为 CAM。C3 C4 CAM植物种类 温带植物 热带植物 干旱植物固定酶 Rubisco PEPcase/Rubisco PEPcase/RubiscoCO2 受体 RUBP RUBP/PEP RUBP/PEP初产物 PGA OAA OAA7.一般来说,C4 植物比 C3 植物的光合产量要高,试从它们各自的光合特征以及生理特征比较分析。C3 C4叶片结构 无花环结构,只有一种叶绿体有花环结构,两种叶绿体叶绿素 a/b 2.8+-0.4 3.9+-0
27、.6CO2 固定酶 Rubisco PEPcase/RubiscoCO2 固定途径 卡尔文循环 C4 途径和卡尔文循环最初 CO2 接受体 RUBP PEP光合速率 低 高CO2 补偿点 高 低饱和光强 全日照 1/2 无光合最适温度 低 高羧化酶对 CO2 亲和力 低 高,远远大于 C3光呼吸 高 低总体的结论是,C4 植物的光合效率大于 C3 植物的光合效率。8.从光呼吸的代谢途径来看,光呼吸有什么意义?光呼吸的途径:在叶绿体内,光照条件下,Rubisco 把 RUBP 氧化成乙醇酸磷酸,之后在磷酸酶作用下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸和过氧化氢,过氧化氢变为洋
28、气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油-3-磷酸,参与卡尔文循环。 在干旱和高辐射期间,气孔关闭,CO2 不能进入,会导致光抑制。光呼吸会释放 CO2,消耗多余的能量,对光合器官起到保护的作用,避免产生光抑制。 在有氧条件下,通过光呼吸可以回收 75%的碳,避免损失过多。 有利于氮的代谢。9.卡尔文循环和光呼吸的代谢有什么联系? 卡尔文循环产生的有机物的 1/4 通过光呼吸来消耗。 氧气浓度高时,Rubisco 作为加氧酶,是 RUBP 氧化,进行光呼吸;CO2 高时,Rubisco 作为羧化酶,使 CO2 羧化,
29、进行卡尔文循环。 光呼吸的最终产物是甘油酸-3-磷酸,参与到卡尔文循环中。10.通过学习植物水分代谢、矿质元素和光合作用知识之后,你认为怎样才能提高农作物的产量。 合理灌溉。合理灌溉可以改善作物各种生理作用,还能改变栽培环境,间接地对作用发生影响。 合理追肥。根据植物的形态指标和生理指标确定追肥的种类和量。同时,为了提高肥效,需要适当的灌溉、适当的深耕和改善施肥的方式。 光的强度尽量的接近于植物的光饱和点,使植物的光合速率最大,最大可能的积累有机物,但是同时注意光强不能太强,会产生光抑制的现象。 栽培的密度适度的大点,肥水充足,植株繁茂,能吸收更多的 CO2,但同时要注意光线的强弱,因为随着光
30、强的增加 CO2 的利用率增加,光合速率加快。同时,可通过人工的增加 CO2 含量,提高光合速率。 使作物在适宜的温度范围内栽植,使作物体内的酶的活性在较强的水平,加速光合作用的碳反应过程,积累更多的有机物。11.C3 植物、C4 植物和 CAM 在固定 CO2 方面的异同。C3 C4 CAM受体 RUBP PEP PEP固定酶 Rubisco PEPcase/Rubisco PEPcase/Rubisco进行的阶段 CO2 羧化、CO2 还原、更新CO2 羧化、转变、脱羧与还原、再生羧化、还原、脱羧、C3 途径初产物 PGA OAA OAA能量使用 先 NADPH 后 ATP12.据你所知,
31、叶子变黄可能与什么条件有关,请全面讨论。 水分的缺失。水分是植物进行正常的生命活动的基础。 矿质元素的缺失。有些矿质元素是叶绿素合成的元素,有些矿质元素是叶绿素合成过程中酶的活化剂,这些元素都影响叶绿素的形成,出现叶子变黄。 光条件的影响。光线过弱时,植株叶片中叶绿素分解的速度大于合成的速度,因为缺少叶绿素而使叶色变黄。 温度。叶绿素生物合成的过程中需要大量的酶的参与,过高或过低的温度都会影响酶的活动,从而影响叶绿素的合成。 叶片的衰老。叶片衰老时,叶绿素容易降解,数量减少,而类胡萝卜素比较稳定,所以叶色呈现出黄色。13.高 O2 浓度对光合过程有什么影响?答:对于光合过程有抑制的作用。高的
32、O2 浓度,会促进 Rubisco 的加氧酶的作用,更偏向于进行光呼吸,从而抑制了光合作用的进行。15.“霜叶红于二月花” ,为什么霜降后枫叶变红?答:霜降后,温度降低,体内积累了较多的糖分以适应寒冷,体内的可溶性糖多了,就形成较多的花色素苷,叶子就呈红色的了。第四章 植物的呼吸作用 呼吸作用:指生物体内的有机物质,通过氧化还原而产生 CO2 同时释放能量的过程。 有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出 CO2 并形成水,同时释放能量的过程。 无氧呼吸:指在无氧条件下,细胞把某些有机物分解成为不彻底的氧化产物,同时释放能量的过程。 呼吸速率:用植物的单位鲜重、干重
33、或原生质表示,或者在一定时间内所放出的二氧化碳的体积,或所吸收的氧气的体积来表示。 呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率。第六章 植物体内有机物的运输(重点) 胞间连丝:是连接两个相邻植物细胞的胞质通道,行使水分、营养物质、小的信号分子,以及大分子的胞质运输功能。 压力流学说:筛管中溶液流运输是由源和库端之间渗透产生的压力梯度推动的。 韧皮部装载:指光和产物从叶肉细胞到筛分子-伴胞复合体的整个过程。 多聚体-陷阱模型:叶肉细胞合成的蔗糖运到维管束鞘细胞,经过众多的胞间连丝,进入居间细胞,居间细胞内的运输蔗糖分别与 1 或 2 个半乳糖分子合成棉子糖或水
34、苏糖,这两种糖分大,不能扩散回维管束鞘细胞,只能运送到筛分子。 韧皮部卸出:装载在韧皮部的同化产物输出到库的接受细胞的过程。 胞质泵动学说:筛分子内腔的细胞质呈几条长丝状,形成胞纵束,纵跨筛分子,每束直径为 1到几微米。在束内呈环状的蛋白质丝反复的、有节奏的收缩和张弛,就产生一种蠕动,把细胞质长距离泵走,糖分就随之流动。 收缩蛋白学说:筛管腔内有很多具有收缩能力的 P 蛋白,是它推动筛管汁液运行。 库强度:等于库容量和库活力的乘积。 配置:指源叶中新形成同化产物的代谢转化。 分配:指新形成同化产物在各种库之间的分布。1.植物叶片中合成的有机物质是以什么形式和通过什么途径运输到根部?如何用实验证
35、明植物体内有机物运输的形式和途径?答:形式主要是还原性糖,例如蔗糖、棉子糖、水苏糖和毛蕊糖,其中以蔗糖为最多。运输途径是筛分子-伴胞复合体通过韧皮部运输。验证形式:利用蚜虫的吻刺法收集韧皮部的汁液。 蚜虫以其吻刺插入叶或茎的筛管细胞吸取汁液。当蚜虫吸取汁液时,用 CO2 麻醉蚜虫,用激光将蚜虫吻刺于下唇处切断,切口处不断流出筛管汁液,可收集汁液供分析。验证途径:运用放射性同位素示踪法。5.木本植物怕剥皮而不怕空心,这是什么道理?答:叶片是植物有机物合成的地方,合成的有机物通过韧皮部向双向运输,供植物的正常生命活动。剥皮即是破坏了植物的韧皮部,使有机物的运输收到阻碍。第八章 植物生长物质(重点)
36、 植物生长物质:调节植物生长发育的物质。 植物激素:是指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。 植物激素受体:指特异地识别激素并能与激素高度结合的蛋白质。 植物激素突变体:由于基因突变而引起植物激素缺陷的突变体。 植物多肽激素:具有调节生理过程和传递细胞信号功能的活性多肽。 生长素极性运输:生长素只能从植物体的形态学上端向下端运输。 植物生长调节剂:指一些具有植物激素活性的人工合成的物质。 植物生长促进剂:促进分生组织细胞分裂和伸长,促进营养器官的生长和生殖器官的发育,外施生长抑制剂可抑制其促进效能。 植物生长抑制剂:抑制顶端分省组织生长,使植物丧失顶
37、端优势,侧枝多,叶小,生殖器官也受影响。 植物生长延缓剂:是赤霉素类,使植株矮小,茎粗,节间短,叶面积小,叶厚,叶色深绿,不影响花的发育。1.生长素是在植物体的哪些部位合成的?生长素的合成有哪些途径?答:合成部位-叶原基、嫩叶、发育中种子途径(底物是色氨酸)-吲哚丙酮酸途径、色胺途径、吲哚乙腈途径和吲哚乙酰胺途径。2.根尖和茎尖的薄壁细胞有哪些特点与生长素的极性运输是相适应的?答:生长素的极性运输是指生长素只能从植物体的形态学上端向下端运输。在细胞基部的质膜上有专一的生长素输出载体。3.植物体内的赤霉素、细胞分裂素和脱落酸的生物合成有何联系。4.细胞分裂素是怎样促进细胞分裂的?答:CTK+CR
38、E1 信号的跨膜转换 CRE1 上的 pi 基团到组氨酸磷酸转移蛋白上细胞核内反应蛋白基因表达细胞分裂5.香蕉、芒果、苹果果实成熟期间,乙烯是怎样形成的?乙烯又是怎样诱导果实成熟的?答:MetSAM ACC+O2Eth(MACC)诱导果实的成熟:促进呼吸强度,促进代谢;促进有机物质的转化;促进质膜透性的增加。6.生长素与赤霉素,生长素与细胞分裂素,赤霉素与脱落酸,乙烯与脱落酸各有什么相互关系?8.生长素、赤霉素、细胞分裂素、脱落酸和乙烯在农业生产上有何作用?生长素:1.促进扦插的枝条生根 2促进果实发育 3.防止落花落果赤霉素:1.在啤酒生产上可促进麦芽糖化。2.促进发芽。3.促进生长。4.促
39、进雄花发生。细胞分裂素:细胞分裂素可用于蔬菜、水果和鲜花的保鲜保绿。其次,细胞分裂素还可用于果树和蔬菜上,主要作用用于促进细胞扩大,提高坐果率,延缓叶片衰老。脱落酸:1.抑制生长 2.促进休眠 3.引起气孔关闭 4.增加抗逆性乙烯:1.催熟果实。2.促进衰老。10.要使水稻秧苗矮壮分蘖多,你在水肥管理或植物生长调节剂应用方面有什么建议?答:在水肥管理中,在氮、磷、硫、锌的肥料的使用中,要适量不能使用太多,使用太多利于伸长生长。在植物生长调节剂方面,使用 TIBA、CCC。11.要使水仙矮化而又能在春节期间开花,用 MH 处理好呢,还是用 PP333 处理好呢?为什么?答:用 PP333 处理。
40、原因:MH 是生长抑制剂,植株矮小,生殖器官也会受影响;PP333 是生长延缓剂,使用后,植株矮小,而不会影响花的发育。13.作物能抵御各种逆境胁迫,是由一种激素起作用或多种激素协同作用?请分析。答:多种激素协同作用。第九章 光形态建成(重点) 光形态建成:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成。 暗形态建成:暗中生长的植物幼苗表现出各种黄化特征。 光敏色素:吸收红光-远红光可逆转换的光受体。 去黄化:给黄化幼苗一个微弱的闪光出现的现象。1.什么是植物光形态建成?它与光合作用有何不同?答:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成,亦即光控制发育的过程。光形态建成控制的是细胞的结构,光合作用控制的是物质的形成;光形态建成中利用红光、远红光、蓝光和紫外光,光合作用中利用蓝紫光和红光;光形态建成在植物的各个器官中进行,光合作用在叶片中进行。