1、一元一次不等式组历年经典应用题常用不等号 读作 常见的表示不等关系的数学术语或词语“” 大于 正数、超速“” 小于 负数、不足“” 大于等于(不小于) 非负数、至少、不少于、最低“” 小于等于(不大于) 非正数、至多、不超过、限速、最高“” 不等于1、 把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?2、 某中学为八年级寄宿学生安排宿舍,如果每间住4人,那么有20人无法安排,如果每间住8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。3、 某 校 为 了 奖 励 在 数 学
2、 竞 赛 中 获 奖 的 学 生 ,买 了 若 干 本 课 外 读 物 准 备 送 给 他 们 .如 果 每 人 送 3本 ,则 还余 8本 ;如 果 前 面 每 人 送 5本 ,最 后 一 人 得 到 的 课 外 读 物 不 足 3本 .设 该 校 买 了 m本 课 外 读 物 ,有 x名 学 生获 奖 ,请 解 答 下 列 问 题 :(1)用 含 x的 代 数 式 表 示 m;(2)求 出 该 校 的 获 奖 人 数 及 所 买 课 外 读 物 的 本 数 .4、 韩 日 “世 界 杯 ”期 间 , 重 庆 球 迷 一 行 56人 从 旅 馆 乘 出 租 车 到 球 场 为 中 国 队 加
3、 油 , 现 有 A、 B两 个 出租 车 队 , A队 比 B队 少 3辆 车 , 若 全 部 安 排 乘 A队 的 车 , 每 辆 坐 5人 , 车 不 够 , 每 辆 坐 6人 , 有 的 车 未坐 满 ; 若 全 部 安 排 乘 B队 的 车 , 每 辆 车 坐 4人 , 车 不 够 , 每 辆 车 坐 5人 , 有 的 车 未 坐 满 , 则 A队 有 出租 车 多 少 辆 ?5、 某 种 植 物 适 宜 生 长 在 温 度 为 18 20 的 山 区 ,已 知 山 区 海 拔 每 升 高 100m,气 温 下 降 0.6 ,现 测 出 山 脚 下 的 平 均 气 温 为 22 ,问
4、 该 植 物 种 在 山 上 的 哪 一 部 分 为 宜 (设 山 脚 下 的 平 均 海 拔 高 度 为 0m).6、 某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,请直接写出获得最大利润的进货方案7、 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下
5、信息:每亩水面的年租金为500元,水面需按整数亩出租;每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益(1)若租用水面n亩,则年租金共需_元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益成本);(3)李大爷现有资金25 000元,他准备再向银行贷不超过25 000元的款,用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35 000元?8:某商
6、店需要购进一批电视机和洗衣机,根据市场调查,电视机与洗衣机的进价和售价如下表:电视机进货量不少于洗衣机的进货量的一半类 别 电视机 洗衣机进价(元/台) 1800 1500售价(元/台) 2000 1600计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润(利润售价进价)9:有人问一位老师他所教的班上有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,不足六位同学在操场上踢足球。”试问这
7、个班共有多少名学生?10:我市某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克;生产一件B种产品需要甲种原料2.5千克,乙种原料3.5千克,该化工厂现有的原料能否保证生产顺利进行?若能的话,有几种方案?请你设计出来。11:为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人求这个中学共选派值勤学生多少人?共有多少个
8、交通路口安排值勤?一、选择题1. 如果a、b表示两个负数,且ab,则( ) (A) (B) 1 (C) (D)ab11baba12. a、b是有理数,下列各式中成立的是( ) (A)若ab,则 a2b 2 (B)若a 2b 2,则ab(C)若ab,则a|b| (D)若a| b|,则ab3. aa的值一定是( )(A)大于零 (B)小于零 (C)不大于零 (D)不小于零4. 若由xy可得到ax ay,应满足的条件是( ) (A)a0 (B)a 0 (C)a0 (D)a05. 若不等式(a1)x a1的解集是 x1,则a必满足( )(A)a0 (B)a 1 (C)a1 (D)a16. 九年级(1)
9、班的几个同学,毕业前合影留念,每人交0.70 元一张彩色底片0.68元,扩印一张相片0.50元,每人分一张在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ) (A)2人 (B)3人 (C)4人 (D)5人7. 若不等式组 有解,则 k的取值范围是( )kx,21(A)k2 (B)k2 (C)k1 (D)1k28. 不等式组 的解集是x2,则m 的取值范围是( )1,59(A)m2 (B)m2 (C)m1 (D)m19. 如果a 2xa 2y(a0)那么x_y若x是非负数,则 的解集是_523x10. 已知(x2) 22x 3ya0,y是正数,则a的取值范围是_11. 若m5,试用m表示出
10、不等式(5m)x1m的解集_12. k满足_时,方程组 中的x大于1,y小于1 4,2k18.若m、n为有理数,解关于 x的不等式( m 21) xn19.已知方程组 的解满足xy0,求m的取值范围y12,320.当 时,求关于x的不等式 的解集30)(2kk kxk4)5(21.当k取何值时,方程组 的解x,y都是负数52,k22.已知 中的x,y满足0yx1,求k的取值范围2,4x23.关于x的不等式组 的整数解共有5个,求a的取值范围23,24.已知关于x,y 的方程组 的解为正数,求m的取值范围34,7yx25.若关于x的不等式组 只有4个整数解,求a的取值范围x32,15答案1:解:
11、设乙种糖果x千克,根据题意得:208+18x400,且8+x15,所以,解得:7x 答:所混合的乙种糖果最多是 千克,最少是7千克答案2:设有X间宿舍,则由题可得人数为:4X+20 ,所以有:0(4X+20)-8(X-1)8,化简后得:5 X7,因宿舍数量X必为整数,故有:X=6(间)则人数为:4X+20=44(人)答案:3: 解 析 (1)根据题意直接列式即可;(2)根据“每人送3本,则还余8本”“前面每人送5本,则最后一人得到的课外读物不足3本”列不等式,解得即可) 答解:(1)m=3x+8,3x+8-5(x-1)03x+8-5(x-1)3,解得:5x13/2 因为x为正整数,所以x=6,
12、把x=6代入m=3x+8得,m=26,答:该校获奖人数为6人,所买课外读物为26本答案4:解:设A队有出租车x 辆,B队有(x+3)辆,依题意可得解得9 x11, x为整数,x=10.答案5:设该植物种在海拔x米的地方为宜,则 1822-(x/100)0.620解得1000/3x2000/3答:该植物种在山的1000/3-2000/3米之间比较适宜答案:6:【小题1】设购进甲种商品x件,则乙种商品为(20x)件,根据题意得19012x+8(20x)200解得, x10,x可能为8、9、10进货方案有3种,甲种商品8件,乙种商品12件甲种商品9件,乙种商品11件甲种商品10件,乙种商品10件【小
13、题2】设利润为w万元,则 w与x之间的关系式为:w=(14.5 12)x+ (108)(20x)=0.5x+40 当甲种商品 10件时,利润最大,为45万元【小题3】用最大利润45万元来进货,用最大利润进货,没有总件数限制,但要考虑尽量把钱用完分以下五种情况讨论,通过计算比较即可全进甲,能购买3件;全进乙,能购买5件; 甲进1件,同时乙进4件;甲进2件,同时乙进2件; 甲进3件,同时乙进1件解析:答案7:解:(1)500n(2)每亩收益=41400+20160=8800每亩成本=4(75+525)+20(15+85)+500=4900利润=88004900=3900 (3)解:设租n亩,则贷款
14、(4900n25000)元解得:n10 ,解得n9 ,又n为正整数 n=10 贷款 49001025000=24000(元)答案8(1)关键描述语:电视机进货量不少于洗衣机的进货量的一半,由此可用不等式将电视机和洗衣机的进货量表示出来,在根据商店最多可筹到的资金数可列不等式,求解不等式组即可;(2)根据利润=售价- 进价,列出关系式进行讨论可知哪种方案获利最多【解析】(1)设商店购进电视机x 台,则购进洗衣机(100-x)台,根据题意得解不等式组得 xx取整数x可以取34,35,36,37,38,39 ,即购进电视机最少34台,最多39台,商店有6种进货方案;(2)设商店销售完毕后获利为y元,
15、根据题意得y=(2000-1800)x+ (1600-1500 )(100-x )=100x+100001000 ,y 随x 增大而增大,当x=39时,商店获利最多为13900元9:设这个班最多有x个人依题意列不等式0x-(x/2+x/4+x/7 6,解得,0 x56 x可以被2,4, 7整除,所以求一下 2,4,7 的最小公倍数是2x2x7=28人所以这个班的人数是28的倍数,因为 0a56所以只有28符合题意,这个班有28人答案:10:分析: (1 )设生产A产品x件,则生产B 产品(80-x)件依题意列出方程组求解,由此判断能否保证生产(2)设生产A产品x件,总造价是 y元,当x取最大值
16、时,总造价最低解答: 解:(1 )能设生产A产品x件,则生产B产品(80-x )件依题意得,5x+2.5(80-x)2901.5x+3.5(80-x)212解之得,34x36 ,则x能取值34、35、36,可有三种生产方案方案一:生产A产品34件,则生产B产品80-34=46件;方案二:生产A产品35件,则生产B产品(80-35)=45件;方案三:生产A产品36件,则生产B产品(80-36)=44件(2)设生产A产品x件,总造价是y元,可得:y=120x+200(80-x)=16000-80x由式子可得,x取最大值时,总造价最低即x=36件时,y=16000-8036=13120元答:第三种方案造价最低,最低造价是13120元11:设路口有x个,则学生共有(4x+78)人44x+78-8(x-1) 8 解不等式得到: 19.5x20.5;由于x 是正整数,所以x=20,参加执勤:78+420=158有158名学生参加执勤,共有20个路口故答案为:158,20