1、 1 洗手 基于 matlab 的高频信号调制 洗手 引言 洗手 用调制信号去控制高频振荡器的幅度 , 吃饭 使其幅度的变化量随调制信号成正比的变化 , 吃饭 这一过程叫做调制 。 洗手 经过幅度调制后的高频振荡称为幅度调制波 (简称调幅波 )。 洗手 根据频谱结构的不同可分为 : beef普通调幅 (AM)波 、 beef抑制载波的双边带调幅 (DSB-SC AM)波 、 beef抑制载波的单边带调幅 (SSB-SC AM)波 。 洗手 洗手 摘要 洗手 实验研究范围包括对于调制深度 m 取值范围的 研究 , 吃饭 单频和多频信号的振幅调制以及频谱的研究 , 吃饭 对比标准已调波和双边单以及
2、单边带频谱和功率利用的区别和效率问题 。 洗手洗手 Abstract 洗手 For the study of the modulation depth m range includingthe experiment, amplitude modulation and single frequency and multi frequency signal and the spectrum of themodulated wave, compared to the standard and the bilateral and single sideband spectrum and power u
3、tilization of the difference and efficiency problem.洗手 洗手 洗手 洗手 洗手 洗手 一实验原理说明 洗手 调制波的表达式 洗手 2 在载波为 )cos( twUu cCc , 吃饭 调制电压为 tUu cos 时 , 吃饭 且满足 cw ,吃饭 可以得到调幅信号的表达式为 twtmUu cCAM c o s)c o s1( 。 洗手 对于多频的调制信号 1 )c o s ()( n nnn tUtf , 吃饭 则 调 幅 波 表 达 式 为 1 c o s)c o s (1 n cnnnCAM twtUUu 。 洗手洗手 2.调幅波的频谱
4、 洗手 调幅波 不是一个简单的正弦波形 。 洗手 在单一频率的正弦信号的调制情况下 , 吃饭 调幅波如前所描述 。 洗手 将其用三角公式展开 , 吃饭 可得 洗手 洗手 可见 ,单一频率信号调制的调幅波包含三个频率分量 , 由三个高频正弦波叠加而成 。 洗手 调制信号的幅度及频率信息只含在边频分量中 。洗手洗手 对于多频调制信号而言 , 吃饭 调制电压为 )cos(1 twUu n n , 吃饭 则相应的调幅波表示为 洗手 洗手 双边带信号 洗手 在调制过程中 , 吃饭 将载波抑制就形成了抑制载波双边带信号 , 吃 饭简称双边带信号 。 洗手 它可用载波与调制信号相乘得到 , 吃饭 其表示式为
5、twUkUu cc cos 。 洗手 单边带( SSB)信号是由 DSB 信号经边带滤波器滤除一个边带或在调制过程中 , 吃饭 直接将一个边带抵消而成 。 洗手 单频调制时 ,吃饭 CUDSB uku 。 洗手 上边带为 twUu cssB )c o s ( ,下边带为 twUu CSSB )c o s ( .洗手 二 、 beef实验过程分析 洗手 单频信号的调制分析 洗手 设 单频 调 制信 号 u=2cos(wt),w=2*pi*f,f=300Hz, 载 波信 号tUmtUmtUtu cCcCcCAM )c o s (2)c o s (2c o s)( 1( ) 1 c o s( ) c
6、 o sA M C n n n cnu t U U t t 3 uc=4*cos(wct) , 吃饭 wc=2*pi*fc,fc=10kHz.m 为调制深度 , 吃饭 uckum , 吃饭 k为比例常数 , 吃饭 一般由调制电路的参数决定 。 洗手洗手 当 m 取不同的值时 , 吃饭 AM 调 幅波的包络图不同 。 洗手 具体分析如下 : beef洗手 在 matlab 中编写程序如图 2-1-1所示 洗手 洗手 fc=100000;beef %载波频率 洗手 f=300;b e ef %调制信号频率 洗手 m=(填写) ;b eef %调制指数 洗手 t=0:1e-7:0.02;beef %
7、采样间隔 洗手 U=2*cos(2*pi*f.*t);beef %调制信号 洗手 Uc=4*cos(2*pi*fc.*t);beef %载波信号 洗手 Uam=(1+m*(U/2).*Uc;beef %已调波信号 洗手 subplot(2,1,1);beef洗手 plot(t,U);beef洗手 title(调制信号 );beef洗手 grid;b e ef洗手 subplot(2,1,2);beef洗手 plot(t,Uam);beef洗手 title(已调信号 );beef洗手 grid;b e ef洗手 图 2-1-1 洗手 当 m=0 时 , 吃饭 实验结果如图 2-1-2所示 ; b
8、eef洗手 洗手 4 图 2-1-2 洗手 当 m=0.5时 , 吃饭 实验结果如图 2-1-3所示 洗手 洗手 图 2-1-3 洗手 当 m=0.9时 , 吃饭 实验结果如图 2-1-4所示 洗手 洗手 图 2-1-4 洗手 当 m=1 时 , 吃饭 实验结果如图 2-1-5所示 ; beef洗手 5 洗手 图 2-1-5 洗手 当 m=1.2时 , 吃饭 实验结果如图 2-1-6所示 洗手 洗手 图 2-1-6 洗手 当 m=2 时 , 吃饭 实验结果如图 2-1-7所示 ; beef洗手 6 洗手 图 2-1-7 洗手 实验结果分析 : beef洗手 调制系数 m反映了调幅的强弱程度 ,
9、 吃饭 一般 m的值越大调幅深度越深 。洗手 当 m=0 时 , 吃饭 表示未调幅 , 吃饭 即无调副作用 ; beef当 m=1 时 , 吃饭 调制系数的百分比达到 100%, 吃饭 包络振幅 Um=Uc,此时包络振幅的最小值 Uam|min=0;beef当 m1 时 , 吃饭 已调波的包络 形状与调制信号不一样 , 吃饭 产生了严重的包络失真 , 吃饭 这种情况我们称为过量调幅 , 吃饭 实际应用中必须尽量避免 。 洗手 当0m1 时 , 吃饭 已调波波形的包络与调制信号的波形一致 , 吃饭 表明调制信号记载在调幅波的包络中 。 洗手 因此 , 吃饭 在振幅调制过程中为了避免产生过量调幅失
10、真 , 吃饭 保证已调波的包络真实地反映出调制信号的变化规律 , 吃饭要求调制系数 m 必须满足 : beef0m1。 洗手洗手 在载波为 )cos( twUu cCc , 吃饭 调制电压为 tUu cos 时 , 吃饭 且满足 cw ,吃饭 可以得到调幅信号的表达式为 twtmUu cCAM c o s)c o s1( 。 洗手洗手 在接下来研究多个频率的调制信号的振幅调制时 , 吃饭 将严格注意 m的取7 值 , 吃饭 确保已调波波形不失真的输出 。 洗手洗手 实验过程中发现的问题 : beef洗手 由于载波信号频率很大 , 吃饭 使得在绘图过程中每个周期的时间很短 ,吃饭 这样得到的图形
11、是一条蓝带 , 吃饭 看不出明显的余弦波 。 洗手洗手 当 0.95m1 时 , 吃饭 其已调信号的波形基本就和 m=1 时的已调信号波形一致 , 吃饭 分析原因是因为载波信号频率过大 , 吃饭 时间周期太短 , 吃饭 当时间间隔精度不是很高时 , 吃饭 就会看到一段 Uam 为零的时间段 , 吃饭 这样会影响对 m 有效范围的 确定 。 洗手洗手 洗手 多频信号的调制分析 洗手 实际的调制信号比较复杂 , 吃饭 是含有多个频率的限带信号 。 洗手 接下来将会对多频信号进行振幅调制与频谱的分析 。 洗手洗手 (1)多频信号的振幅调制 洗手 源程序 洗手 fc=10000;beef %载波频率
12、洗手 f1=300;b e eff2=200;b eeff3=150;b eef %各调制信号频率 洗手 A1=20;b e efA2=15;b eefA3=30;beef %各调制信 号振幅 洗手 m1=0.3;b e efm2=0.5;b eefm3=0.65;b eef %各调制信号调制指数 洗手 ts=0.000001;beef %时间间隔 洗手 t=-0.02:ts:0.02;beef %时间范围取值 洗手 Uc=40*cos(2*pi*fc.*t);beef %载波 洗手 U1=A1*cos(2*pi*f1.*t);beef %调制信号 U1 洗手 U2=A2*cos(2*pi*f
13、2.*t);beef %调制信号 U2 洗手 U3=A3*cos(2*pi*f3.*t);beef %调制信号 U3 洗手 U=U1+U2+U3;beef %总的调制信号 洗手 Uam=(1+m1*(U1/A1)+m2*(U2/A2)+m3*(U3/A3).*Uc;beef %已调信号 洗手 subplot(2,1,1);beef %绘制调制信号 洗手 plot(t,U);beef洗手 xlabel(t(s);beef洗手 ylabel(U);beef洗手 grid;b e ef洗手 8 subplot(2,1,2);beef %绘制已调信号 洗手 plot(t,Uam);beef洗手 xla
14、bel(t(s);beef洗手 ylabel(Uam);beef洗手 title(已调信号 );beef洗手 grid;b e ef 图 2-2-1 洗手 实验结果如图 2-2-1 洗手 实验结果分析 : beef洗手 在各调制信号的调制深度 m均满足 0m1 时 , 吃饭 多频信号已调波的包络形状与调制信号一致 。 洗手 这一结论与单频信号的调制相同 。 洗手洗手 对于多频调制信号而言 , 吃饭 调制电压为 )cos(1 twUu n n , 吃饭 则相应的调幅波表示为 洗手 已调信号信号关于 x轴上下对称 , 吃饭 说明上下包络相位相差 180 度 。洗手 已调信号还关于载波已调信号对称
15、, 吃饭 呈现镜像对称 。 洗手洗手 实验中发现的问题 : beef洗手 在实验程序的设计中 , 吃饭 我们发现对于时间 t 的取值范围以及时间间隔 ts 的设置都会对实验结果产生影响 。 洗 手所以在确定 t 的取值范围时 , 吃饭 我们选取 t -0.02,0.02, 吃饭 时间间隔 ts 的取值也尽量取小一点 ,1( ) 1 c o s( ) c o sA M C n n n cnu t U U t t 9 吃饭 但是不超过 matlab的存储范围 。 洗手 这样使得图像扫描更精确 。 洗手洗手 对于多频载波 , 吃饭 其各个频率对应的调制波的 m 值不同 , 吃饭 已调信号的表达式可归
16、纳为 1 c o s)c o s (1 n cnncmAM twtmUU。 洗手洗手 对于各个调制信号 m的取值 , 吃饭 要综合考虑其频率以及振幅对 m的影响 , 吃饭 使其所有频率的调制不会引起过量调幅失真 。 洗手 例如 , 吃饭 若此处将m1、 beefm2、 beefm3 的值设为 m1=0.65;befm2=0.75;befm3=0.85, 吃饭 则此时图像会产生失真 。 洗手 所以在设置 m的值时应该多方面考虑频率和振幅对它的影响 。 洗手 洗手 洗手 3.多频信号调制频谱分析 洗手 利用 matlab中傅立叶函数 fft()对多频信号的频率谱线进行分析 。 洗手洗手 源程序 :
17、 beef洗手 fc=10000;beef %载波频率 洗手 f1=300;b e eff2=200;b eeff3=150;b eef %各调制信号频率 洗手 A1=20;b e efA2=15;b eefA3=30;beef %各调制信号振幅 洗手 m1=0.3;b e efm2=0.5;b eefm3=0.65;b eef %各调制信号调制指数 洗手 ts=0.00001;beef %时间间隔 洗手 t=-1:ts:1;beef %时间范围取值 洗手 Uc=40*cos(2*pi*fc.*t);beef %载波 洗手 U1=A1*cos(2*pi*f1.*t);beef %调制信号 U1
18、 洗手 U2=A2*cos(2*pi*f2.*t);beef %调制信号 U2 洗手 U3=A3*cos(2*pi*f3.*t);beef %调制信号 U3 洗手 U=U1+U2+U3;beef %总的调制信号 洗手 Uam=(1+m1*(U1/A1)+m2*(U2/A2)+m3*(U3/A3).*Uc;beef %已调信号 洗手 y1=fft(Uc);beef %载波傅里叶变换 洗手 y2=fft(U);beef %调制信号傅里叶变换 洗手 y3=fft(Uam);beef 洗手 subplot(3,1,1);beef %绘制载波频谱 洗手 plot(abs(y1);beef洗手 xlabe
19、l(w);beef洗手 title(载波频谱 );beef洗手 axis(18000 22000 0 5e6);b e ef洗手 subplot(3,1,2);beef %绘制调制信号频谱 洗手 plot(abs(y2);beef洗手 10 xlabel(w);beef洗手 title(调制信号频谱 );beef洗手 axis(0 1000 0 5e6);beef洗手 subplot(3,1,3);beef %绘制已调信号频谱 洗手 plot(abs(y3);beef洗手 xlabel(w);beef洗手 title(已调波信号频谱 );beef洗手 axis(19100 20800 0 5e6);b e ef %已调信号傅里叶变换 洗手 实验结果如图 , 吃饭 图 2-3-1 显示的分别是载波与调制信号的频谱 , 吃饭 图2-3-2显示的是已调波信号的频 洗手 洗手 图 2-3-1 洗手