8.3 最大流问题Maximal Flow ProblemCh8 网络模型 Network Model8.3 最大流问题Maximal Flow Problem8.3.1 基本概念8145633810763图8184图618所示的网络图中定义了一个发点v1,称为源(source,supply node),定义了一个收点v7,称为汇(sink,demand node),其余点v2,v3,v6为中间点,称为转运点(transshipment nodes)。如果有多个发点和收点,则虚设发点和收点转化成一个发点和收点。图中的权是该弧在单位时间内的最大通过能力,称为弧的容量(capacity)。最大流问题是在单位时间内安排一个运送方案,将发点的物质沿着弧的方向运送到收点,使总运输量最大。 Ch8 网络模型 Network Model设cij为弧(i,j)的容量,fij为弧(i,j)的流量。容量是弧(i,j)单位时间内的最大通过能力,流量是弧(i,j)单位时间内的实际通过量,流量的集合f=fij称为网络的流。发点到收点的总流量记为v=val(f),v也是网络的流量。 图618最大流问题的线性规划数