初二几何辅助线添加方法.doc

上传人:99****p 文档编号:1467486 上传时间:2019-03-01 格式:DOC 页数:16 大小:346KB
下载 相关 举报
初二几何辅助线添加方法.doc_第1页
第1页 / 共16页
初二几何辅助线添加方法.doc_第2页
第2页 / 共16页
初二几何辅助线添加方法.doc_第3页
第3页 / 共16页
初二几何辅助线添加方法.doc_第4页
第4页 / 共16页
初二几何辅助线添加方法.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、初中数学辅助线1.三角形问题添加辅助线方法 方法 1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法 2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法 3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。方法 4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。 2.

2、平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种

3、特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。(8)过一腰的中点作另一腰的平行线。(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。作辅助线的方法一:中点、中位线,延线,平行线。如遇

4、条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。二:垂线、分角线,翻转全等连。如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转 180度,得到全等形, ,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。三:边边若相等,旋转做实验。如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”

5、旋转两种。四:造角、平、相似,和、差、积、商见。如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。 ”五:面积找底高,多边变三边。如遇求面积, (在条件和结论中出现线段的平方、乘积,仍可视为求面积) ,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。如遇多边形,想法割补成三角形;反之,亦成立。另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”

6、 。初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。四边形平行四边形出现,对称中心等分点。梯形问题巧转换,变为和 。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行

7、成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。三角形中作辅助线的常用方法举例一倍长中线1:已知ABC ,AD 是 BC 边上的中线,分别以 AB 边、AC 边为直角边各向形外作等腰直角三角形,如图 5-2, 求证 EF2AD。二、截长补短法作辅助线。在ABC 中, AD 平分BAC,ACB 2B,求证:ABAC CD。ABCDEF25图ADCBE12三、延长已知边构造三角形:例如:如图 7-1:已知 ACBD,ADAC 于 A ,BC BD 于 B, 求证:ADBC分析:欲证 AD BC,先证分别含有 AD,BC 的三角形全等,有几种方

8、案:ADC 与BCD,AOD 与BOC , ABD 与BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。证明:分别延长 DA,CB,它们的延长交于 E 点,ADAC BC BD (已知)CAEDBE 90 (垂直的定义)在DBE 与CAE 中 )(已 知 已 证公 共 角ACBDEDBECAE (AAS)ED EC EBEA (全等三角形对应边相等)ED EA ECEB 即:ADBC。(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。 )四、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图 8-1:ABCD,A

9、DBC 求证:AB=CD。分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。证明:连接 AC(或 BD)ABCD ADBC (已知)12,34 (两直线平行,内错角相等)在ABC 与 CDA 中 )(43已 证公 共 边已 证CAABC CDA (ASA )ABCD18图 234ABCDE17图OABCD(全等三角形对应边相等)五、有和角平分线垂直的线段时,通常把这条线段延长。例如:如图 9-1:在 Rt ABC 中,ABAC,BAC90,12,CEBD 的延长于 E 。求证:BD2CE 分析:要证 BD2CE,想到要构造线段 2CE,同时 CE 与ABC 的平分线垂直

10、,想到要将其延长。 证明:分别延长 BA,CE 交于点 F。BECF (已知)BEF BEC 90 (垂直的定义)在BEF 与 BEC 中, )(21已 证公 共 边已 知BECFBEF BEC(ASA)CE=FE= 21CF (全等三角形对应边相等)BAC=90 BECF (已知) BAC CAF90 1BDA901BFC90BDABFC在ABD 与ACF 中)(已 知 已 证已 证ACBFDABDACF (AAS)BDCF (全等三角形对应边相等) BD2CE六、连接已知点,构造全等三角形。例如:已知:如图 10-1;AC、BD 相交于 O 点,且 ABDC,AC BD,求证:AD 。分析

11、:要证AD,可证它们所在的三角形ABO 和DCO 全等,而只有 ABDC 和对顶角两个条件,差一个条件, ,难以证其全等,只有另寻其它的三角形全等,由 ABDC ,ACBD ,若连接 BC,则 ABC 和DCB 全等,所以,证得 A D。证明:连接 BC,在ABC 和DCB 中 )(公 共 边已 知已 知CBAABC DCB (SSS)19图 DCBAEF2CB10图 OAD (全等三角形对应边相等)七、取线段中点构造全等三有形。例如:如图 11-1:ABDC,AD 求证: ABCDCB 。分析:由 ABDC,AD,想到如取 AD 的中点 N,连接 NB,NC,再由 SAS 公理有ABNDCN

12、,故 BN CN,ABN DCN。下面只需证 NBCNCB,再取 BC 的中点M,连接 MN,则由 SSS 公理有NBM NCM,所以NBCNCB 。问题得证。证明:取 AD,BC 的中点 N、M,连接 NB,NM,NC 。则 AN=DN,BM=CM,在ABN 和DCN 中 )()已 知已 知辅 助 线 的 作 法DCABNABNDCN (SAS)ABNDCN NBNC (全等三角形对应边、角相等)在NBM 与NCM 中 )(公 共 边 辅 助 线 的 作 法 已 证 NMCBNMBNCM ,(SSS) NBCNCB (全等三角形对应角相等)NBCABN NCB DCN 即 ABCDCB。二

13、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。从角平分线上一点向两边作垂线;利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边) 。通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。与角有关的辅助线(一) 、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望

14、同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。下面就几何中常见的定理所涉及到的辅助线作以介绍。如图 1-1,AOC= BOC,如取 OE=OF,并连接 DE、DF,则有OED OFD ,从而为我们证明线 段、 角相等创造了条 件。1图 DCBAMN图 1-1OABDEFC图 1-2ADB CEF如图 1-2,AB/CD,BE 平分BCD,CE 平分BCD,点 E 在 AD 上,求证:BC=AB+CD。分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到

15、的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。简证:在此题中可在长线段 BC 上截取 BF=AB,再证明 CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长 BE 与 CD的延长线交于一点来证明。自已试一试。(二) 、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。1、如图 2-1,已知 ABA

16、D, BAC=FAC,CD=BC。求证:ADC+ B=180 分析:可由 C 向BAD 的两边作垂线。近而证ADC 与B 之和为平角。(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。 (如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交) 。已知:如图 3-1,BAD=DAC,ABAC,CD AD 于 D,H 是 BC 中点。求证:DH= 21(AB-AC)分析:延长 CD 交 AB 于点 E,则可得全等三角形。问

17、题可证。(四) 、以角分线上一点做角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。如图 4-1 和图 4-2 所示。图 2-1ABCDEF图 图 3-1ABCDHE图 4-2图 4-1CA BCBAFIEDHG三 由线段和差想到的辅助线口诀:线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延

18、长部分等于另一条短线段,然后证明新线段等于长线段。对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明。在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:四 由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线。三角形中有中线,延长

19、中线等中线。在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质) ,然后通过探索,找到解决问题的方法。(一) 、中线把原三角形分成两个面积相等的小三角形即如图 1,AD 是 ABC 的中线,则 SABD=SACD= SABC(因为 ABD 与 ACD 是等底同高的) 。例 1如图 2,ABC 中, AD 是中线,延长 AD 到 E,使 DE=AD,DF 是 DCE 的中线。已知ABC 的面积为 2,求: CDF 的面积。解:因为 AD 是 ABC 的中线,所以 SACD= SABC=

20、2=1,又因 CD 是 ACE 的中线,故SCDE=SACD=1,因 DF 是 CDE 的中线,所以 SCDF= SCDE= 1= 。CDF 的面积为 。(二) 、由中点应想到利用三角形的中位线例 2如图 3,在四边形 ABCD 中,AB=CD ,E 、 F 分别是 BC、AD 的中点,BA、CD 的延长线分别交 EF 的延长线 G、H。求证:BGE=CHE。证明:连结 BD,并取 BD 的中点为 M,连结 ME、MF,ME 是 BCD 的中位线,ME CD,MEF=CHE,MF 是 ABD 的中位线,MF AB,MFE=BGE,AB=CD, ME=MF,MEF=MFE,从而BGE=CHE。(

21、三) 、由中线应想到延长中线例 3图 4,已知 ABC 中,AB=5 ,AC=3,连 BC 上的中线 AD=2,求 BC 的长。解:延长 AD 到 E,使 DE=AD,则 AE=2AD=22=4。在 ACD 和 EBD 中,AD=ED,ADC=EDB,CD=BD ,ACDEBD ,AC=BE,从而 BE=AC=3。在 ABE 中,因 AE2+BE2=42+32=25=AB2,故E=90,BD= = = ,故 BC=2BD=2 。例 4如图 5,已知 ABC 中,AD 是BAC 的平分线,AD 又是 BC 边 上的中线。求证:ABC 是等腰三角形。证明:延长 AD 到 E,使 DE=AD。仿例

22、3 可证:BEDCAD ,故 EB=AC, E=2,又1= 2,1= E,AB=EB,从而 AB=AC,即 ABC 是等腰三角形。(四) 、直角三角形斜边中线的性质例 5如图 6,已知梯形 ABCD 中,AB/DC ,ACBC,ADBD,求证:AC=BD。证明:取 AB 的中点 E,连结 DE、CE,则 DE、CE 分别为 RtABD,RtABC斜边 AB 上的中线,故 DE=CE= AB,因此CDE= DCE。AB/DC,CDE= 1,DCE= 2,1= 2,在 ADE 和 BCE 中,DE=CE,1=2,AE=BE ,ADEBCE ,AD=BC,从而梯形 ABCD 是等腰梯形,因此 AC=

23、BD。(五) 、角平分线且垂直一线段,应想到等腰三角形的中线(六)中线延长全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法:延长中线构造全等三角形;利用翻折,构造全等三角形;引平行线构造全等三角形;作连线构造等腰三角形。常见辅助线的作法有以下几种:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等

24、变换中的“对折” 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目特殊方法:在求有关三角形的定值一类的问题时,

25、常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答梯形的辅助线口诀:梯形问题巧转换,变为和 。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解梯形问题的基本思路。至于选取哪种方法,要结合题目图形和已知条件。常见的几种辅助线的作法如下:(一) 、平移1、平移一腰:例 1. 如图所示,在直角梯形 ABCD 中,A90 ,AB DC,AD15,AB 16,BC 17. 求作法 图形平移腰,转化为三角形、平行四边形。ABCDE平移对角线。转化为三角形、平行四边形。ABCDE延长两腰,转化为三角形。ABD作高,转化为直角三角形和矩形。 CEF中位线与腰中点连线。ABCDEFABCABCDE

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。