1、1辅助角公式 的推导2sincossin()abab在三角函数中,有一种常见而重要的题型,即化 为一个角cos的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式 =ib或 = 2sin()absincosab2a,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个cos()学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外
2、通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式.一.教学中常见的的推导方法教学中常见的推导过程与方法如下1.引例例 1 求证: sin +cos =2sin( + )=2cos( - ).363其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论:可见, sin +cos 可以化为一个角的三角函数形式.一般地,asin +bcos 是否可以化为一个角的三角函数形式呢?2.辅助角公式的推导例 2 化 为一个角的一个三角函数的形式.sincosab解: asin +bco
3、s = ( sin + cos ),22ab2ba 令 =cos , =sin ,2ab2则 asin +bcos = (sin cos +cos sin )= sin( + ),(其中 tan = )2 ba2 令 =sin , =cos ,则 asin +bcos =2ab2ba(sin sin +cos cos )= cos( - ),(其中2abtan = )a其中 的大小可以由 sin 、cos 的符号确定 的象限,再由 tan 的值求出.或由 tan = 和(a,b)所在的象限来确定.ba推导之后,是配套的例题和大量的练习.但是这种推导方法有两个问题:一是为什么要令 =cos ,2
4、ab=sin ?让学生费解.二是这种 “规定”式的推导,学生难记易忘、2ba易错!二.让辅助角公式 = 来得更自然sincosab2sin()ab能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代 2008 级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若 a=0 或 b=0 时, 已经是一个角的一个三角sics函数的形式,无需化简.故有 ab0.1.在平面直角坐标系中,以 a 为横坐标,b 为纵坐标描一点 P(a,b)如图 1 所示,则总有一个角 ,它的终边经过点 P.设 OP=r,r=,由三角函数的定义知2asin =
5、= ,br2cos = .2a所以 asin +bcos = cos sin + sin cos 2b2abr图 1O 的终边P(a,b)yx3= .(其中 tan = )2sin()abba2.若在平面直角坐标系中,以 b 为横坐标,以 a 为纵坐标可以描点 P(b,a),如图 2 所示,则总有一个角 的终边经过点 P(b,a),设 OP=r,则 r= .由2a三角函数的定义知sin = = ,r2bcos = = .b2aasin +bcos =22sincosab= . (其中 tan = )()bco例 3 化 为一个角的一个三角函数的形式.si解:在坐标系中描点 P( ,1),设角
6、的终边过点 P,则 OP =r=3=2.sin = ,cos = .212 =2cos sin +2sin cos =2sin( ).tan =3sinco., =2sin( ).26k3sinco6经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式asin +bcos = ( sin + cos )=2ab22ba,(其中 tan = ).或者2sin()abasin +bcos = (2ab图 2rO xy的终边P(b,a)4sin + cos )= ,(其中 tan = )2ab2ba2cos()abab我想这样的推导,学生理解起来会容易得多,而且也更容易理解asin +bcos
7、 凑成 ( sin + cos )的道理,以222及为什么只有两种形式的结果.例 4 化 为一个角的一个三角函数的形式.sin3cos解法一:点(1,- )在第四象限.OP=2.设角 过 P 点.则 ,3sin2.满足条件的最小正角为 ,1cos2532,.kZ1in3cos2(incos)(incossin)55s()2).33k解法二:点 P(- ,1)在第二象限,OP=2,设角 过 P 点.则 ,31sin2.满足条件的最小正角为 ,cos256,.kZ13in3cos(incos)2(inscos)255() ).66k三.关于辅助角的范围问题由 中,点 P(a,b)的位置可知,终2s
8、incossin()abab边过点 P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为 ,则 .由诱导公式(一)知11k其221sincossin(sin()ababab5中 , , 的具体位置由 与 决定, 的1(0,2)1tanb11sin1co1大小由 决定1t类似地, , 的终边过点2sincoscos()abab(,) ,设满足条件的最小正角为 ,则 由诱导公式有2.k,2 2siss()cos()ab其中 , , 的位置由 和 确定, 的大2(0,)2tanb22in2小由 确定2tanb注意:一般地, ;以后没有特别说明时,角 (或
9、)是所1212求的辅助角四关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为的形式或21sincossin()abab的形式可以利用两角和与差的正、2co余弦公式灵活处理例 化下列三角函数式为一个角的一个三角函数的形式() ;3sin() 26()cos()63解: ()13sin2incos)22(cos)i(6666()26sin()cos()6331 22sin()cos()sin333在本例第()小题中, , ,我们并没有取点a1b( ,) ,而取的是点( ,) 也就是说,当 、
10、中至少有一33ab个是负值时我们可以取( , ) ,或者( , ) 这样确定的角(或 )是锐角,就更加方便12例 6 已知向量 , ,(cos)13ax 1(cos)32bx,求函数 = 的最大值及相应的(sin)0cx(ha的值.x解: 21()os()sin()cos()233hx=1csi(2)2x= 1os()in33x= 2c2si()2= 1os()2x7max2().h这时 .112,4kkZ此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试.五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例 7 如图 3,记扇 OAB 的中心角为,半径为 1,矩形 PQMN 内接于这个扇45形,求矩形的对角线 的最小值.l解:连结 OM,设AOM= .则 MQ=,OQ= ,OP=PN= .sincosinPQ=OQ-OP= .22lMQP= 2sin(cosin)=312= ,其中 , , .15sin()1tan21(0)1arctn2,04arctarctn.2, .2min35lmin1l所以当 时, 矩形的对角线 的最小值为 .1arct42l512N B MAQPO 图 3书资料