第2节向量的分解与向量的坐标运算最新考纲1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.知 识 梳 理1.平面向量的基本定理如果e1和e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使aa1e1a2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底,记为e1,e2.a1e1a2e2叫做向量a关于基底e1,e2的分解式.2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模设a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x1,y1),|a|.(2)向量坐标的求法若向量的起点是坐标原点,则终点坐标即为向量的坐标.设A(x1,y1),B(x2,y2),则(x2x1,y