1、开关电源工作原理详解析 (2011-10-10 15:35) 分类: 开关电源 第 1 页:前言:PC 电源知多少个人 PC 所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人 PC 电源称之为开关电源(Switching Mode Power Supplies,简称 SMPS),它还有一个绰号DC-DC 转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将 127 V 或者 220 V 市电通过变压
2、器转为低压电,比如说 12V,而且经过转换后的低压依然是 AC 交流电;然后再通过一系列的二极管进行矫正和整流,并将低压 AC 交流电转化为脉动电压(配图 1 和 2 中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成 DC 直流电(配图 1 和 2 中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压 DC 直流电输出了(配图 1 和 2 中的“5”)配图 1:标准的线性电源设计图配图 2:线性电源的波形尽管说线性电源非常适合为低
3、功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox 等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。对于线性电源而言,其内部电容以及变压器的大小和 AC 市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是 60Hz(有些国家是 50Hz)频率的 AC 市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC 市电的浪涌越大,线性电源的变压器的个头就越大。由此可见,对于个人 PC 领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所
4、以说个人 PC 用户并不适合用线性电源。开关电源知多少开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC 输入电压可以在进入变压器之前升压(升压前一般是 50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人 PC 以及像 VCR 录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。事实上,终端用户的 PC 的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)负责控制开关管的电路,
5、从电源的输出获得反馈信号,然后根据 PC 的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作 PWM,Pulse Width Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。第 2 页:看图说话:图解开关电源下图 3 和 4 描述的是开关电源的 PWM 反馈机制。图 3 描述的是没有PFC(Pow
6、er Factor Correction,功率因素校正) 电路的廉价电源,图 4 描述的是采用主动式 PFC 设计的中高端电源。图 3:没有 PFC 电路的电源图 4:有 PFC 电路的电源通过图 3 和图 4 的对比我们可以看出两者的不同之处:一个具备主动式PFC 电路而另一个不具备,前者没有 110/220 V 转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式 PFC 电源的讲解。为了让读者能够更好的理解电源的工作原理,以上我们提供的是非常基本的图解,图中并未包含其他额外的电路,比如说短路保护、待机电路以及 PG 信号发生器等等。当然了,如果您还想了解一下更加详尽的图解,请看图
7、5。如果看不懂也没关系,因为这张图本来就是为那些专业电源设计人员看的。图 5:典型的低端 ATX 电源设计图你可能会问,图 5 设计图中为什么没有电压整流电路?事实上,PWM 电路已经肩负起了电压整流的工作。输入电压在经过开关管之前将会再次校正,而且进入变压器的电压已经成为方形波。所以,变压器输出的波形也是方形波,而不是正弦波。由于此时波形已经是方形波,所以电压可以轻而易举的被变压器转换为 DC 直流电压。也就是说,当电压被变压器重新校正之后,输出电压已经变成了 DC 直流电压。这就是为什么很多时候开关电源经常会被称之为 DC-DC转换器。馈送 PWM 控制电路的回路负责所有需要的调节功能。如
8、果输出电压错误时,PWM 控制电路就会改变工作周期的控制信号以适应变压器,最终将输出电压校正过来。这种情况经常会发生在 PC 功耗升高的时,此时输出电压趋于下降,或者 PC 功耗下降的时,此时输出电压趋于上升。在看下一页是,我们有必要了解一下以下信息:在变压器之前的所有电路及模块称为“primary”(一次侧),在变压器之后的所有电路及模块称为“secondary”(二次侧);采用主动式 PFC 设计的电源不具备 110 V/ 220 V 转换器,同时也没有电压倍压器;对于没有 PFC 电路的电源而言,如果 110 V / 220 V 被设定为 110 V 时,电流在进入整流桥之前,电源本身将
9、会利用电压倍压器将 110 V 提升至 220 V 左右;PC 电源上的开关管由一对功率 MOSFET 管构成,当然也有其他的组合方式,之后我们将会详解;变压器所需波形为方形波,所以通过变压器后的电压波形都是方形波,而非正弦波;PWM 控制电流往往都是集成电路,通常是通过一个小的变压器与一次侧隔离,而有时候也可能是通过耦合芯片(一种很小的带有 LED 和光电晶体管的 IC 芯片)和一次侧隔离;PWM 控制电路是根据电源的输出负载情况来控制电源的开关管的闭合的。如果输出电压过高或者过低时,PWM 控制电路将会改变电压的波形以适应开关管,从而达到校正输出电压的目的;下一页我们将通过图片来研究电源的
10、每一个模块和电路,通过实物图形象的告诉你在电源中何处能找到它们。第 3 页:看图说话:电源内部揭秘当你第一次打开一台电源后(确保电源线没有和市电连接,否则会被电到),你可能会被里面那些奇奇怪怪的元器件搞得晕头转向,但是有两样东西你肯定认识:电源风扇和散热片。开关电源内部但是您应该很容易就能分辨出电源内部哪些元器件属于一次侧,哪些属于二次侧。一般来讲,如果你看到一个(采用主动式 PFC 电路的电源)或者两个(无 PFC 电路的电源)很大的滤波电容的话,那一侧就是一次侧。一般情况下,再电源的两个散热片之间都会安排 3 个变压器,比如说图 7所示,主变压器是最大个的那颗;中等“体型”的那颗往往负责+
11、5VSB 输出,而最小的那颗一般用于 PWM 控制电路,主要用于隔离一次侧和二次侧部分(这也是为什么在上文图 3 和图 4 中的变压器上贴着“隔离器”的标签)。有些电源并不把变压器当“隔离器”来用,而是采用一颗或者多颗光耦(看起来像是IC 整合芯片),也即说采用这种设计方案的电源只有两个变压器主变压器和辅变压器。电源内部一般都有两个散热片,一个属于一次侧,另一个属于二次侧。如果是一台主动式 PFC 电源,那么它的在一次侧的散热片上,你可以看到开关管、PFC 晶体管以及二极管。这也不是绝对的,因为也有些厂商可能会选择将主动式 PFC 组件安装到独立的散热片上,此时在一次侧会有两个散热片。在二次侧
12、的散热片上,你会发现有一些整流器,它们看起来和三极管有点像,但事实上,它们都是有两颗功率二极管组合而成的。在二次侧的散热片旁边,你还会看到很多电容和电感线圈,共同共同组成了低压滤波模块找到它们也就找到了二次侧。区分一次侧和二次侧更简单的方法就是跟着电源的线走。一般来讲,与输出线相连的往往是二次侧,而与输入线相连的是一次侧(从市电接入的输入线)。如图 7 所示。区分一次侧和二次侧以上我们从宏观的角度大致介绍了一下一台电源内部的各个模块。下面我们细化一下,将话题转移到电源各个模块的元器件上来第 4 页:瞬变滤波电路解析市电接入 PC 开关电源之后,首先进入瞬变滤波电路(Transient Filt
13、ering),也就是我们常说的 EMI 电路。下图 8 描述的是一台 PC 电源的“推荐的”的瞬变滤波电路的电路图。瞬变滤波电路的电路图为什么要强调是“推荐的”的呢?因为市面上很多电源,尤其是低端电源,往往会省去图 8 中的一些元器件。所以说通过检查 EMI 电路是否有缩水就可以来判断你的电源品质的优劣。EMI 电路电路的主要部件是 MOV (l Oxide Varistor,金属氧化物压敏电阻),或者压敏电阻(图 8 中 RV1 所示),负责抑制市电瞬变中的尖峰。MOV 元件同样被用在浪涌抑制器上(surge suppressors)。尽管如此,许多低端电源为了节省成本往往会砍掉重要的 MO
14、V 元件。对于配备 MOV 元件电源而言,有无浪涌抑制器已经不重要了,因为电源已经有了抑制浪涌的功能。图 8 中的 L1 and L2 是铁素体线圈;C1 and C2 为圆盘电容,通常是蓝色的,这些电容通常也叫“Y”电容;C3 是金属化聚酯电容,通常容量为100nF、470nF 或 680nF,也叫“X”电容;有些电源配备了两颗 X 电容,和市电并联相接,如图 8 RV1 所示。X 电容可以任何一种和市电并联的电容;Y 电容一般都是两两配对,需要串联连接到火、零之间并将两个电容的中点通过机箱接地。也就是说,它们是和市电并联的。瞬变滤波电路不仅可以起到给市电滤波的作用,而且可以阻止开关管产生的
15、噪声干扰到同在一根市电上的其他电子设备。一起来看几个实际的例子。如图 9 所示,你能看到一些奇怪之处吗?这个电源居然没有瞬变滤波电路!这是一款低廉的“山寨”电源。请注意,看看电路板上的标记,瞬变滤波电路本来应该有才对,但是却被丧失良知的黑心 JS 们带到了市场里。这款低廉的“山寨”电源没有瞬变滤波电路再看图 10 实物所示,这是一款具备瞬变滤波电路的低端电源,但是正如我们看到的那样,这款电源的瞬变滤波电路省去了重要的 MOV 压敏电阻,而且只有一个铁素体线圈;不过这款电源配备了一个额外的 X 电容。低端电源的 EMI 电路瞬变滤波电路分为一级 EMI 和二级 EMI,很多电源的一级 EMI 往往会被安置在一个独立的 PCB 板上,靠近市电接口部分,二级 EMI 则被安置在电源的主PCB 板上,如下图 11 和 12 所示。