第六章利用元素法解决利用元素法解决:定积分在几何上的应用定积分在几何上的应用定积分在物理上的应用定积分在物理上的应用定积分的应用第一节定积分的元素法元素法 一、什么问题可以用定积分解决一、什么问题可以用定积分解决?二二、如何应用定积分解决问题、如何应用定积分解决问题?第六六章 表示为一、什么问题可以用定积分解决一、什么问题可以用定积分解决?1)所求量 U 是与区间a,b上的某分布 f(x)有关的2)U 对区间 a,b 具有可加性,即可通过“大化小大化小,常代变常代变,近似和近似和,取极限取极限”定积分定义一个整体量;二二、如何应用定积分解决问题、如何应用定积分解决问题?第一步第一步 利用“化整为零,以常代变”求出局部量的微分表达式第二步第二步 利用“积零为整,无限累加”求出整体量的积分表达式这种分析方法称为元素法元素法(或微元分析法微元分析法)元素元素的几何形状常取为:条,带,段,环,扇,片,壳 等近似值精确值三、已知平行截面面积函数的三、已知平行截面面积函数的 立体体积立体体积第二节一、一、平面图形的面积平面图形的面积二、二、平面曲线的弧长平面曲线的弧长 定积分在几何学上的应用 第六