电力系统小干扰法稳定分析电力系统小干扰法稳定分析n动力学系统运动的稳定性动力学系统运动的稳定性:由描述动力学系统的微分方程:由描述动力学系统的微分方程组的解来表征,反映为微分方程组解的稳定性。组的解来表征,反映为微分方程组解的稳定性。n李雅普诺夫运动稳定性理论李雅普诺夫运动稳定性理论:某一运动系统受到一个非常:某一运动系统受到一个非常微小并随即消失的力(小扰动)的作用,使某些相应的量微小并随即消失的力(小扰动)的作用,使某些相应的量X1、X2产生偏移,经过一段时间,这些偏移量都小于产生偏移,经过一段时间,这些偏移量都小于某一预先指定的任意小的正数,则未受扰系统是稳定的,某一预先指定的任意小的正数,则未受扰系统是稳定的,否则不稳定。否则不稳定。如果未受扰系统是稳定的,并且:如果未受扰系统是稳定的,并且:则称为受扰系统是渐近稳定的。则称为受扰系统是渐近稳定的。n电力系统静态稳定属于渐近稳定。电力系统静态稳定属于渐近稳定。12/19/20221二、运动稳定性的基本概念和小扰动法原理二、运动稳定性的基本概念和小扰动法原理 非线性系统的线性近似稳定性判断法非线性系统的线性近似稳定性判断法n设有一