1、求轨迹方程的常用方法 (一)求轨迹方程的一般方法:1. 定义法:如果动点 P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点 P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点 P 所满足的几何上的等量关系,再用点 P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何量 t,以此量作为参变数,分别建立 P 点坐标 x,y 与该参数 t 的
2、函数关系 xf(t) ,yg(t) ,进而通过消参化为轨迹的普通方程 F(x,y)0。4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P的运动引发的,而该点的运动规律已知, (该点坐标满足某已知曲线方程) ,则可以设出 P(x,y) ,用(x,y)表示出相关点 P的坐标,然后把 P的坐标代入已知曲线方程,即可得到动点 P 的轨迹方程。5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程) ,该法经常与参数法并用。一:用定义法求轨迹方程
3、例 1:已知 的顶点 A,B 的坐标分别为(-4,0) , (4,0) ,C 为动点,且满足C求点 C 的轨迹。,sin45isnB【变式】:已知圆 的圆心为 M1,圆 的圆心为 M2,一动圆与这两个圆外切,求动圆圆心 P 的轨迹方程。二:用直译法求轨迹方程此类问题重在寻找数量关系。例 2:一条线段两个端点 A 和 B 分别在 x 轴和 y 轴上滑动,且BM=a,AM=b,求 AB 中点 M 的轨迹方程?【变式】: 动点 P(x,y)到两定点 A(3,0)和 B(3,0)的距离的比等于 2(即) ,求动点 P 的轨迹方程?2|PBA三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数
4、方程,最后消参,化为普通方程。注意参数的取值范围。例 3过点 P(2,4)作两条互相垂直的直线 l1,l 2,若 l1交 x 轴于 A 点,l 2交 y 轴于 B点,求线段 AB 的中点 M 的轨迹方程。四:用代入法求轨迹方程例 4. 的的 中 点求 线 段为 定 点上 的 动 点是 椭 圆点 MAB,aAbyaxB)02(12轨迹方程。【变式】如图所示,已知 P(4,0) 是圆 x2+y2=36 内的一点, A、B 是圆上两动点,且满足APB=90 ,求矩形 APBQ 的顶点 Q 的轨迹方程 头htp:/w.xjkygcom126t:/.j 五、用交轨法求轨迹方程BQRAPoyx例 5.已知
5、椭圆 (abo)的两个顶点为 , ,与 y 轴平行的21xy1(0)Aa2()直线交椭圆于 P1、 P2,求 A1P1与 A2P2交点 M 的轨迹方程.六、用点差法求轨迹方程例 6. 已知椭圆 ,12yx(1)求过点 且被 平分的弦所在直线的方程;,P(2)求斜率为 2 的平行弦的中点轨迹方程;(3)过 引椭圆的割线,求截得的弦的中点的轨迹方程;,A练习1.在 中,B,C 坐标分别为(-3,0) , (3,0) ,且三角形周长为 16,则点 A 的轨迹A方程是_.2.两条直线 与 的交点的轨迹方程是 _ .1myx1yx3.已知圆的方程为(x-1) 2+y2=1,过原点 O 作圆的弦 0A,则
6、弦的中点 M 的轨迹方程是 _4.当参数 m 随意变化时,则抛物线 的顶点的轨迹方程为mx221_。5:点 M 到点 F(4,0)的距离比它到直线 的距离小 1,则点 M 的轨迹方程为50_。6:求与两定点 距离的比为 1:2 的点的轨迹方程为_OA130, 、 ,7.抛物线 的通径(过焦点且垂直于对称轴的弦)与抛物线交于 A、B 两点,动点xy42C 在抛物线上,求ABC 重心 P 的轨迹方程。8.已知动点 P 到定点 F(1,0)和直线 x=3 的距离之和等于 4,求点 P 的轨迹方程。9.过原点作直线 l 和抛物线 交于 A、B 两点,求线段 AB 的中点 M 的轨迹方642xy程。高二
7、(上)求轨迹方程的常用方法 答案例 1:已知 的顶点 A,B 的坐标分别为(-4,0) , (4,0) ,C 为动点,且满足C求点 C 的轨迹。,sin45isnB【解析】由 可知 ,即 ,满足椭,si 15cab10|BA圆的定义。令椭圆方程为 ,则 ,则轨迹方程为12yax 34, b( ,图形为椭圆(不含左,右顶点) 。1925yx)5【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等。【变式 1
8、】: 1:已知圆 的圆心为 M1,圆 的圆心为 M2,一动圆与这两个圆外切,求动圆圆心 P 的轨迹方程。解:设动圆的半径为 R,由两圆外切的条件可得: , 。动圆圆心 P 的轨迹是以 M1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。故所求轨迹方程为2:一动圆与圆 O: 外切,而与圆 C: 内切,那么动圆的圆12yx 0862xy心 M 的轨迹是:A:抛物线 B:圆 C:椭圆 D:双曲线一支【解答】令动圆半径为 R,则有 ,则|MO|-|MC|=2,满足双曲线定义。故选1|RMOD。二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。例 2: 一条线段 AB 的长等于 2a,两个
9、端点 A 和 B 分别在 x 轴和 y 轴上滑动,求 AB 中点 P 的轨迹方程?解 设 M 点的坐标为 由平几的中线定理:在直角三),(yx角形 AOB 中,OM= ,21aAB22,yxayxM 点的轨迹是以 O 为圆心,a 为半径的圆周.【点评】此题中找到了 OM= 这一等量关系是此题成功的关键所在。一般直译法有下1列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。3)运用有关公式:有时要运用符合题设的
10、有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式 2】: 动点 P(x,y)到两定点 A(3,0)和 B(3,0)的距离的比等于 2(即) ,求动点 P 的轨迹方程?2|PBA【解答】|PA|= 22)3(|,)3( yxByx代入 得|PBA 22 4)3()( yx化简得(x5) 2+y2=16,轨迹是以(5,0)为圆心,4 为半径的圆.三:用参数法
11、求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。例 3过点 P(2,4)作两条互相垂直的直线 l1,l 2,若 l1交 x 轴于 A 点,l 2交 y 轴于 B点,求线段 AB 的中点 M 的轨迹方程。【解析】分析 1:从运动的角度观察发现,点 M 的运动是由直线 l1引发的,可设出 l1的斜率 k 作为参数,建立动点 M 坐标(x,y)满足的参数方程。解法 1:设 M(x,y) ,设直线 l1的方程为 y4k(x2) ,(k))(221 ll的 方 程 为则 直 线由Ax)0k(的 坐 标 为轴 交 点与,Byl 42 的 坐 标 为轴
12、 交 点与M 为 AB 的中点,)(124为 参 数kyx消去 k,得 x2y50。另外,当 k0 时,AB 中点为 M(1,2) ,满足上述轨迹方程;当 k 不存在时,AB 中点为 M(1,2) ,也满足上述轨迹方程。综上所述,M 的轨迹方程为 x2y50。分析 2:解法 1 中在利用 k1k21 时,需注意 k1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用PAB 为直角三角形的几何特性:|ABP解法 2:设 M(x,y) ,连结 MP,则 A(2x,0) ,B(0,2y) ,l 1l 2,PAB 为直角三角形|21|P由 直 角 三 角 形 的 性 质222 )()4()(
13、yxyx化简,得 x2y50,此即 M 的轨迹方程。分析 3:设 M(x,y) ,由已知 l1l 2,联想到两直线垂直的充要条件:k 1k21,即可列出轨迹方程,关键是如何用 M 点坐标表示 A、B 两点坐标。事实上,由 M 为 AB 的中点,易找出它们的坐标之间的联系。解法 3:设 M(x,y) ,M 为 AB 中点,A(2x,0) ,B(0,2y) 。又 l1,l 2过点 P(2,4) ,且 l1l 2PAPB,从而 kPAkPB1,0yxkBPA而0522 xy, 化 简 , 得注意到 l1x 轴时,l 2y 轴,此时 A(2,0) ,B(0,4)中点 M(1,2) ,经检验,它也满足方
14、程 x2y50综上可知,点 M 的轨迹方程为 x2y50。【点评】1) 解法 1 用了参数法,消参时应注意取值范围。解法 2,3 为直译法,运用了kPAkPB1, 这些等量关系。 。|21|ABP用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式 3】过圆 O:x 2 +y2= 4 外一点 A(4,0) ,作圆的割线,求割线被圆截得的弦 BC 的中点 M 的轨迹。解法一:“几何法”设点 M 的坐标为(x,y),因为点 M 是弦 B
15、C 的中点,所以 OMBC,所以|OM | | | , 即(x 2 +y2)+(x ) 2 +y2 =16化简得:(x2) 2+ y2 =4.由方程 与方程 x2 +y2= 4 得两圆的交点的横坐标为 1,所以点 M 的轨迹方程为(x2) 2+ y2 =4 (0x1) 。所以 M 的轨迹是以(2,0)为圆心,2 为半径的圆在圆 O 内的部分。解法二:“参数法”设点 M 的坐标为(x,y) ,B(x 1,y1),C (x 2,y2)直线 AB 的方程为 y=k(x4),由直线与圆的方程得(1+k 2)x 2 8k 2x +16k24=0.(*),由点 M 为 BC 的中点,所以 x= .(1)
16、, 又 OMBC ,所以214kk= .(2)由方程(1 ) (2)xy消去 k 得(x2) 2+ y2 =4,又由方程(*)的0 得 k2 ,所以 x1.31所以点 M 的轨迹方程为(x2) 2+ y2 =4 (0x1)所以 M 的轨迹是以(2,0)为圆心,2 为半径的圆在圆 O 内的部分。四:用代入法等其它方法求轨迹方程例 4. 的的 中 点求 线 段为 定 点上 的 动 点是 椭 圆点 ABaAbyaxB)02(12轨迹方程。分析:题中涉及了三个点 A、B、M,其中 A 为定点,而 B、M 为动点,且点 B 的运动是有规律的,显然 M 的运动是由 B 的运动而引发的,可见 M、B 为相关
17、点,故采用相关点法求动点 M 的轨迹方程。【解析】设动点 M 的坐标为(x,y) ,而设 B 点坐标为(x 0,y 0)则由 M 为线段 AB 中点,可得yayax2200即点 B 坐标可表为(2x2a,2y)上在 椭 圆点又 1)(20byaxyx,ba )(12220从 而 有14)(22byaxM,的 轨 迹 方 程 为得 动 点整 理【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式 4】如图所示,已知 P(4,0) 是圆 x2+y2=36 内的一点, A、B 是圆上两动点,且满足APB =90,求矩形 APBQ 的顶点 Q 的轨迹方程 头htp:/w.xjkygcom1
18、26t:/.j 【解析】: 设 AB 的中点为 R,坐标为(x,y),则在 Rt ABP中,|AR|=|PR| 头htp:/w.xjkygcom126t:/.j 又因为 R 是弦 AB 的中点,依垂径定理 头htp:/w.xjkygcom126t126.hp:/wxjkygco 在RtOAR 中,|AR| 2=|AO|2|OR |2=36( x2+y2)又|AR|=|PR|= )4(y所以有(x4) 2+y2=36(x 2+y2),即 x2+y24x10=0因此点 R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求的轨迹上运动 头htp:/w.xjkygcom126t:/.j 设 Q(x
19、,y),R( x1,y1),因为 R 是 PQ 的中点,所以 x1= ,20,1y代入方程 x2+y24x 10=0, 得10=0)(整理得 头htp:/w.xjkygcom126t126.hp:/wxjkygco x2+y2=56,这就是所求的轨迹方程 头htp:/w.xjkygcom126t:/.j 五、用交轨法求轨迹方程 2ab六、用点差法求轨迹方程分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为 , ,线段 的中点 ,则1yxM, 2yxN, MNyxR, , , ,yxy2121得 02212111 x由题意知 ,则上式两端同除以 ,有2xx,02121
20、21 yyx将代入得 21x(1)将 , 代入,得 ,故所求直线方程为: 2x1y21xyBQRAPoyx 0342yx将代入椭圆方程 得 , 符合题意,22yx0416y04163为所求yx(2)将 代入得所求轨迹方程为: (椭圆内部分)21 0yx(3)将 代入得所求轨迹方程为: (椭圆内部21xy 022yx分)练习 1【正确解答】ABC 为三角形,故 A,B,C 不能三点共线。轨迹方程里应除去点,即轨迹方程为)0,5.(,)5(1625xyx2.两条直线 与 的交点的轨迹方程是 .01myx0【解答】:直接消去参数 即得 (交轨法): 02yx3:已知圆的方程为(x-1) 2+y2=1
21、,过原点 O 作圆的弦 0A,则弦的中点 M 的轨迹方程是 .【解答】:令 M 点的坐标为( ,则 A 的坐标为(2 ,代入圆的方程里面得:)yx)041)2(yx4:当参数 m 随意变化时,则抛物线 的顶点的轨迹方程为yxmx221【分析】:把所求轨迹上的动点坐标 x,y 分别用已有的参数 m 来表示,然后消去参数m,便可得到动点的轨迹方程。 【解答】:抛物线方程可化为 xy1254它的顶点坐标为 xmy1254,消去参数 m 得: y34故所求动点的轨迹方程为 。0xy5:点 M 到点 F(4,0)的距离比它到直线 的距离小 1,则点 M 的轨迹方程为x5【分析】:点 M 到点 F(4,0)的距离比它到直线 的距离小 1,意味着点 M0到点 F(4,0)的距离与它到直线 的距离相等。由抛物线标准方程可写出点 M0