1、1工程数学作业(一)答案(满分 100 分)第 2 章 矩阵(一)单项选择题(每小题 2 分,共 20 分)设 ,则 (D )abc123aabbcc1323A. 4 B. 4 C. 6 D. 6若 ,则 (A )012aaA. B. 1 C. D. 1112乘积矩阵 中元素 (C )24035c3A. 1 B. 7 C. 10 D. 8设 均为 阶可逆矩阵,则下列运算关系正确的是( B)A,nA. B. 11()AB11C. D. () 设 均为 阶方阵, 且 ,则下列等式正确的是(D ),k0A. B. nC. D. kAk()下列结论正确的是( A )A. 若 是正交矩阵,则 也是正交矩
2、阵A1B. 若 均为 阶对称矩阵,则 也是对称矩阵B,nBC. 若 均为 阶非零矩阵,则 也是非零矩阵D. 若 均为 阶非零矩阵,则, 0矩阵 的伴随矩阵为( C)1325A. B. 5C. D. 321321方阵 可逆的充分必要条件是(B )AA. B. C. D. 00A*0A*0设 均为 阶可逆矩阵,则 (D )C,n()CB1A. B. ()1C. D. 设 均为 阶可逆矩阵,则下列等式成立的是(A )B,A. B. ()22()A2C. D. 11CBCA2(二)填空题(每小题 2 分,共 20 分) 7 2104 是关于 的一个一次多项式,则该多项式一次项的系数是 2 1x若 为
3、矩阵, 为 矩阵,切乘积 有意义,则 为 54 矩阵A34B25ACB二阶矩阵 10设 ,则 43034, ()815360设 均为 3 阶矩阵,且 ,则 72 AB, AB32AB设 均为 3 阶矩阵,且 ,则 3 1,12()若 为正交矩阵,则 0 a10a矩阵 的秩为 2 243设 是两个可逆矩阵,则 A12, AO12112A(三)解答题(每小题 8 分,共 48 分)设 ,求 ; ; ; ; ;BC354354, BC23AB5A()ABC答案: 810406A73162A2651237B8052)(CB设 ,求 A1001420, ABC解: 10246131024)(CB已知 ,
4、求满足方程 中的 A314, 3AXB解: 2XB32517345172382)3(1BAX写出 4 阶行列式 0143625中元素 的代数余子式,并求其值a412,答案: 0356)(14 453061)(2442a用初等行变换求下列矩阵的逆矩阵: ; ; 12210601解:(1) 912019120310 120390610213601121| 23132 3231291 rr rrIA9121A(2) (过程略) (3) 3514207761 101A求矩阵 的秩1002134解: 0011 010112001023143 424132r rr 3)(AR(四)证明题(每小题 4 分,
5、共 12 分)对任意方阵 ,试证 是对称矩阵A证明: )()( A是对称矩阵若 是 阶方阵,且 ,试证 或 nI1证明: 是 阶方阵,且2A或1若 是正交矩阵,试证 也是正交矩阵A证明: 是正交矩阵1)()()1A即 是正交矩阵工程数学作业(第二次) (满分 100 分)第 3 章 线性方程组(一)单项选择题(每小题 2 分,共 16 分)用消元法得 的解 为(C )xx13410x123A. B. ,02 ,7C. D. 11线性方程组 (B )xx12364A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解向量组 的秩为( A )1012304,A. 3 B. 2 C. 4 D.
6、 55设向量组为 ,则(B )是极大无关组12340101,A. B. C. D. 12,123,124,1 与 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D)AA. 秩 秩 B. 秩 秩()()AC. 秩 秩 D. 秩 秩若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A )A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解以下结论正确的是(D )A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解若向量组 线性相关
7、,则向量组内(A )可被该向量组内其余向量线性表出12, sA. 至少有一个向量 B. 没有一个向量C. 至多有一个向量 D. 任何一个向量9设 A,为 阶矩阵, 既是又是的特征值, 既是又是的属于 的特征向量,则结论( )成立nx 是 AB 的特征值 是 A+B 的特征值 是 AB 的特征值 是 A+B 的属于 的特征向量x10设,为 阶矩阵,若等式( )成立,则称和相似 AB)( BPA1BPA(二)填空题(每小题 2 分,共 16 分)当 时,齐次线性方程组 有非零解x120向量组 线性 相关 120,向量组 的秩是 2310,设齐次线性方程组 的系数行列式 ,则这个方程组有 无穷多 解
8、,且23xx1230系数列向量 是线性 相关 的123,向量组 的极大线性无关组是 , ,向量组 的秩与矩阵 的秩 相同 , s12 s设线性方程组 中有 5 个未知量,且秩 ,则其基础解系中线性无关的解向量有 个AX0()A3设线性方程组 有解, 是它的一个特解,且 的基础解系为 ,则 的通解为b0X0X12,Ab210kX9若 是的特征值,则 是方程 的根I10若矩阵满足 ,则称为正交矩阵A1(三)解答题(第 1 小题 9 分,其余每小题 11 分)1用消元法解线性方程组6xx1234123463850124解: 26109378418431005176223140586 41324132
9、 5rrA 310451365072913650879 4321343 579121 rrr方程组解为 31023104234214 51 rr 324x设有线性方程组 112xyz为何值时,方程组有唯一解?或有无穷多解?解: 2 32222 )1()1(201 110132 31231 r rrA当 且 时, ,方程组有唯一解3AR当 时, ,方程组有无穷多解1)(AR判断向量 能否由向量组 线性表出,若能,写出一种表出方式其中123,87102350631,解:向量 能否由向量组 线性表出,当且仅当方程组 有解321, 321xx这里 57104102376578,321A)(R方程组无解
10、7不能由向量 线性表出321,计算下列向量组的秩,并且(1)判断该向量组是否线性相关 123434789110963,解: 018263149082731,321该向量组线性相关求齐次线性方程组 xx12341245053的一个基础解系解: 30714251034074053213 423141325 rrA 0014500124503214 23134321 rrr方程组的一般解为 令 ,得基础解系 014352xx1310435求下列线性方程组的全部解 xx1234123451359768解: 002871419561428028735116357409152 42314132 5rrA方
11、程组一般解为 00271214r 21794321xx令 , ,这里 , 为任意常数,得方程组通解13kx241k2 0211079792121432kx试证:任一维向量 都可由向量组4321,a, , ,01120314线性表示,且表示方式唯一,写出这种表示方式证明: 0101201231034任一维向量可唯一表示为)()()(1001 3423124321432 aaaaaa 4343232121 )()()(试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解证明:设 为含 个未知量的线性方程组BAXn该方程组有解,即 nAR)(从而 有唯一解当且仅当而相应齐
12、次线性方程组 只有零解的充分必要条件是0XnAR)(有唯一解的充分必要条件是:相应的齐次线性方程组 只有零解BAX 0X9设 是可逆矩阵的特征值,且 ,试证: 是矩阵 的特征值11证明: 是可逆矩阵的特征值存在向量 ,使A 1111 )()()( AI91A即 是矩阵 的特征值10用配方法将二次型 化为标准型43242124321 xxxxf 解: 232242321 )()()(xf )(x令 , , ,y432y3y4yx即 443231yx则将二次型化为标准型 2321yf工程数学作业(第三次) (满分 100 分)第 4 章 随机事件与概率(一)单项选择题 为两个事件,则( B)成立A
13、,A. B. ()()ABC. D. 如果( C)成立,则事件 与 互为对立事件A. B. UC. 且 D. 与 互为对立事件U10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为(D )A. B. C. D. 10327.0.702.072.4. 对于事件 ,命题(C )是正确的AB,A. 如果 互不相容,则 互不相容AB,B. 如果 ,则C. 如果 对立,则 对立,D. 如果 相容,则 相容某随机试验的成功率为 ,则在 3 次重复试验中至少失败 1 次的概率为(D ))10(pA. B. C. D. 3)1(p31( )()()1(23pp6
14、.设随机变量 ,且 ,则参数 与 分别是(A )XBn,)EXD.,.48096nA. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设 为连续型随机变量 的密度函数,则对任意的 , (A )fx() ab,()EX(A. B. d xfab()dC. D. fab() 8.在下列函数中可以作为分布密度函数的是(B )A. B. fxx()sin,230其 它 fxx()sin,02其 它C. D. f()si,其 它 f()si,0其 它109.设连续型随机变量 的密度函数为 ,分布函数为 ,则对任意的区间 ,则 ( Xfx()Fx()(,)ab)(bXaP
15、D)A. B. Fab()abdC. D. f fx()10.设 为随机变量, ,当(C )时,有 XEXD(),2EYD(),()01A. B. YYXC. D. 2(二)填空题从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为 522.已知 ,则当事件 互不相容时, 0.8 , 0.3 PAB().,().05AB,PAB()PAB()3. 为两个事件,且 ,则 , P()4. 已知 ,则 p, 15. 若事件 相互独立,且 ,则 , q),()pq6. 已知 ,则当事件 相互独立时, 0.65 , 0.3 ().,(.035 ()7.设随机变
16、量 ,则 的分布函数 XU,)1XFx()10x8.若 ,则 6 B(,.203E(9.若 ,则 N)P)3)(210. 称为二维随机变量 的 协方差 EY),XY(三)解答题1.设 为三个事件,试用 的运算分别表示下列事件:AC, ABC, 中至少有一个发生;B 中只有一个发生;, 中至多有一个发生; 中至少有两个发生;, 中不多于两个发生;AC 中只有 发生B,解:(1) (2) (3) CBACBA(4) (5) (6)2. 袋中有 3 个红球,2 个白球,现从中随机抽取 2 个球,求下列事件的概率: 2 球恰好同色; 2 球中至少有 1 红球解:设 =“2 球恰好同色”, =“2 球中
17、至少有 1 红球”A503)(523CP 10936)(253CBP3. 加工某种零件需要两道工序,第一道工序的次品率是 2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3%,求加工出来的零件是正品的概率解:设 “第 i 道工序出正品 ”(i=1,2 )iA906.)3.1)(02.()|()(12121 A4. 市场供应的热水瓶中,甲厂产品占 50%,乙厂产品占 30%,丙厂产品占 20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率解:设 “1产 品 由 甲 厂 生 产 “2产 品 由 乙 厂 生 产 “3产 品 由 丙 厂 生 产A