高中各种函数图像画法与函数性质.doc

上传人:gs****r 文档编号:1517107 上传时间:2019-03-04 格式:DOC 页数:24 大小:1.44MB
下载 相关 举报
高中各种函数图像画法与函数性质.doc_第1页
第1页 / 共24页
高中各种函数图像画法与函数性质.doc_第2页
第2页 / 共24页
高中各种函数图像画法与函数性质.doc_第3页
第3页 / 共24页
高中各种函数图像画法与函数性质.doc_第4页
第4页 / 共24页
高中各种函数图像画法与函数性质.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、1一次函数(1)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。(2)一次函数1、一次函数的定义一般地,形如 ( , 是常数,且 )的函数,叫做一次函数,其中 x 是ykxb0k自变量。当 时,一次函数 ,又叫做正比例函数。0bykx一次函数的解析式的形式是 ,要判断一个函数是否是一次函数,就是判断b是否能化成以上形式当 , 时, 仍是一次函数k当 , 时,它不是一

2、次函数0b正比例函数是一次函数的特例,一次函数包括正比例函数2、正比例函数及性质一般地,形如 y=kx(k 是常数,k0)的函数叫做正比例函数,其中 k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) k 不为零 x 指数为 1 b 取零当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随 x 的增大 y 也增大;当k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y 随 x 的增大而增大;k0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b0 b0图象从左到右

3、上升,y 随 x 的增大而增大经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限k0 时,向上平移;当 b0 时,直线经过一、三象限;k0,y 随 x 的增大而增大;(从左向右上升)k0 时,将直线 y=kx 的图象向上平移 个单b位;b0 或 ax+b0)【(h0)【(k0)【(h0)【(h0)【(k0)【(k0)【|k|【y=a(x-h)2+ky=a(x-h)2y=ax2+ky=ax22. 平移规律在原有函数的基础上“ 值正右移,负左移; 值正上移,负下移” hk概括成八个字“左加右减,上加下减” 方法二: 沿 轴平移:向上(下)平移 个单位, 变成cbxay2ymcbxay2(

4、或 )mcbxa2 沿轴平移:向左(右)平移 个单位, 变成cxy2 cxy2(或 )ba)()( mxbxy)()(2四、二次函数 与 的比较2yaxhk2ac0a向下 hk,X=h 时, 随 的增大而减小; 时,xhyxxh随 的增大而增大; 时, 有最大值yk9从解析式上看, 与 是两种不同的表达形式,后者通过2yaxhk2yaxbc配方可以得到前者,即 ,其中 224b 242bacbhk,五、二次函数 图象的画法2yaxbc五点绘图法:利用配方法将二次函数 化为顶点式 ,确2yaxbc2()yaxhk定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的

5、五点为:顶点、与 轴的交点 、以及 关于对称轴对称的点0,0,、与 轴的交点 , (若与 轴没有交点,则取两组关于对称轴2hc, x1x2对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与 轴的交点,与 轴的交点.xy六、二次函数 的性质2yaxbc1. 当 时,抛物线开口向上,对称轴为 ,顶点坐标为 0 2bxa24bac,当 时, 随 的增大而减小;当 时, 随 的增大而增大;当2bxayxyx时, 有最小值 24acb2. 当 时,抛物线开口向下,对称轴为 ,顶点坐标为 当0a 2bxa24bac,时, 随 的增大而增大;当 时, 随 的增大而减小;当 时,2bxyxyx2b

6、x有最大值 y24ac七、二次函数解析式的表示方法1. 一般式: ( , , 为常数, ) ;2yxbcabc0a2. 顶点式: ( , , 为常数, ) ;()ahkhk3. 两根式: ( , , 是抛物线与 轴两交点的横坐标).12x01x2x注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以40bac用交点式表示二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 中, 作为二次项系数,显然 2yxbca0a 当 时,抛物线开口向上, 的值越大,开

7、口越小,反之 的值越小,开口越010大; 当 时,抛物线开口向下, 的值越小,开口越小,反之 的值越大,开口越0aaa大总结起来, 决定了抛物线开口的大小和方向, 的正负决定开口方向,的大小决定开口的大小2. 一次项系数 b在二次项系数 确定的前提下, 决定了抛物线的对称轴ab 在 的前提下,0当 时, ,即抛物线的对称轴在 轴左侧;b02ay当 时, ,即抛物线的对称轴就是 轴;当 时, ,即抛物线对称轴在 轴的右侧0b02ay 在 的前提下,结论刚好与上述相反,即a当 时, ,即抛物线的对称轴在 轴右侧;0b02ay当 时, ,即抛物线的对称轴就是 轴;当 时, ,即抛物线对称轴在 轴的左侧0b02ay的符号的判定:对称轴 在 轴左边则 ,在 轴的右侧aabx20aby则 ,概括的说就是“左同右异”3. 常数项 c 当 时,抛物线与 轴的交点在 轴上方,即抛物线与 轴交点的纵坐标为正;0yxy 当 时,抛物线与 轴的交点为坐标原点,即抛物线与 轴交点的纵坐标为 ; 0 当 时,抛物线与 轴的交点在 轴下方,即抛物线与 轴交点的纵坐标为0cyxy负总结起来, 决定了抛物线与 轴交点的位置总之,只要 都确定,那么这条抛物线就是唯一确定的abc,二次函数解析式的确定:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 企业管理资料库 > 生产营运

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。