目录 上页 下页 返回 结束 常系数非齐次线性微分方程 第八节一、一、二、二、第七章 目录 上页 下页 返回 结束 二阶常系数线性非齐次微分方程:根据解的结构定理,其通解为非齐次方程特解齐次方程通解求特解的方法根据 f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.待定系数法待定系数法目录 上页 下页 返回 结束 一、一、为实数,设特解为其中 为待定多项式,代入原方程,得 为 m 次多项式.(1)若 不是特征方程的根,则取从而得到特解形式为Q(x)为 m 次待定系数多项式目录 上页 下页 返回 结束(2)若 是特征方程的单根,为m 次多项式,故特解形式为(3)若 是特征方程的重根,是 m 次多项式,故特解形式为小结小结 对方程,此结论可推广到高阶常系数线性微分方程.即即当 是特征方程的 k 重根 时,可设特解目录 上页 下页 返回 结束 例例1.的一个特解.解解:本题而特征方程为不是特征方程的根.设所求特解为代入方程:比较系数,得于是所求特解为目录 上页 下页 返回 结束 例例2.的通解.解解:本题特征方程为其根为对应齐次方程的通解为设非齐次方程特解为比较系数,得