数列是高中代数的重要内容,又是学习高等数学的基础.在高考占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面谈谈数列求和的基本方法和技巧.一.公式法:等差数列的前等差数列的前n项和公式:项和公式:等比数列的前等比数列的前n项和公式项和公式 例例1 1:求和:求和:错位相减法:错位相减法:如果一个数列的各项是由一如果一个数列的各项是由一个等差数列与一个等比数列个等差数列与一个等比数列对应项乘积组成,此时求和对应项乘积组成,此时求和可采用错位相减法可采用错位相减法.既既an nbn n型型等差等差等比等比2错位相减法错位相减法如果一个数列的各项是由一个如果一个数列的各项是由一个等差数列和一个等比数列等差数列和一个等比数列的对应项的对应项之积构成的,那么这个数列的前之积构成的,那么这个数列的前n项和即可用此法来求项和即可用此法来求.【错位相减法错位相减法】设设 an的前的前n项和为项和为Sn,ann2n,则,则Sn例例4 求数列 前n项的和解:由题可知,解:由题可知,的通项是等差数列的通项是等差数列2n的通项与等比数列的通项