2.3.2离散型随机变量的方差(一)一、复习回顾一、复习回顾1、离散型随机变量的数学期望、离散型随机变量的数学期望2、数学期望的性质、数学期望的性质数学期望是反映离散型随机变量的平均水平数学期望是反映离散型随机变量的平均水平三、如果随机变量三、如果随机变量X X服从两点分布为服从两点分布为X10Pp1p则则四、如果随机变量四、如果随机变量X服从二项分布,即服从二项分布,即X B(n,p),则),则某人射击某人射击10次,所得环数分别是:次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的;则所得的平均环数平均环数是多少?是多少?二、互动探索二、互动探索X1234P某人射击某人射击10次,所得环数分别是:次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的;则这组数据的方差方差是多是多少?少?加权平均加权平均反映这组数据相对于平均值的集中程度的量反映这组数据相对于平均值的集中程度的量离散型随机变量取值的方差离散型随机变量取值的方差一般地,若离散型随机变量一般地,若离散型随机变量X的概率分布为:的概率分布为:则称则称为随机变量为随机变量X的的方差方差。称