知识要点:知识要点:?判断三角形全等公理有SAS、ASA、AAS、SSS和HL?如果题目给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所先推导出所缺的条件然后再证明缺的条件然后再证明。?一些较难的证明题要添加适当的辅助线添加适当的辅助线构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。构造辅助线的方法:构造辅助线的方法:?1截长补短法。截长补短法。?2平行线法(或平移法):平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt,有时可作出斜边的中线。?3倍长中线法:倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。?4翻折法:翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。1截长补短法(通常用来证明线段和差相等)截长补短法(通常用来证明线段和差相等)?“截长法截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法?“补短法补短法”为把两条线段中的一条补长成为一条长线