第九章 光学小波变换9.1引言傅里叶变换已称为信息处理中一个极为重要的工具,在科学和技术领域中获得广泛应用。信号g(x)的傅里叶变换为逆变换积分区域(-,)如果g(x)是一个时域或空域中分布在(-,)中的稳恒过程或稳定分布,则傅里叶分析给出近乎完美的结果。然而,在自然界和科学技术中还有大量信号,它们具有局部的或定域的特性。例如语言信号、声纳新号、各种电脉冲等,这些信号只出现在一个短暂的时间间隔内,此后很快衰减到零,称快速过程或暂态过程。“小波”信号(如地震波或声纳)许多光学信号具有同样的特征,例如远处空中的目标、显微镜下的小物体、被鉴别的指纹等,显著为零的区域只分布在有限的区域内,上述信号为局部信号或暂态信号。对于局部信号或暂态信号,傅里叶分析就不完全适用。首先,我们仅对t时间信号感兴趣,没有必要在过去、现在及未来的无限长时间范围内对信号进行分析,类似的,在处理定域于x内的空间图像时,也没必要对全平面内的信号进行全面的分析。其次,许多情况下,在t或者x以外的信息是未知的,可能是零,也可能是背景噪音;此外,如果不加选择采用(-,)内全部信号进行傅里叶处理,还可能产生较大误差甚至错误。在一