1、1 摘 要 随着汽车工业技术的发展,人们对汽车的行驶平顺性,操纵稳定性以及乘坐舒适性和安全性的要求越来越高。 汽车行驶平顺性反映了人们的乘坐舒适性,而舒适性则与悬架密切相关。 因此,悬架系统的开发与设计具有很大的实际意义。 本次设计主要研究的是比亚迪 F3 轿车的前、后悬架系统的硬件选择设计,计算出悬架的刚度、静挠度和动挠度及选择出弹簧的各部分尺寸,并且通过阻尼系数和最大卸荷力确定了减振器的主要尺寸,最后进行了横向稳定杆的设计以及汽车平顺性能的分析。本设计在轿车前后悬架的选型中均采用独立悬架。其中前悬架采用当前 家庭轿车前悬流行的麦弗逊悬架。前、后悬架的减振器均采用双向作用式筒式减,后悬则采用
2、半拖曳臂式独立悬架振器。这种结构的设计,有效的提高了乘座的舒适性和驾驶稳定性。 2 1 绪论: 1.1 悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间弹性连接装置的总称。 1.传递它们之间一切的力(反力)及其力矩(包括反力矩)。 2.缓和,抑制由于不平路面所引起的振动和冲击,以保证汽车良好的平顺性,操纵稳定性。 3.迅速衰减车身和车桥的振动。 悬架系统的在汽车上所起到的这几个功用是紧密相连的。要想迅速的衰减 振动、冲击,乘坐舒服,就应该降低悬架刚度。但这样,又会降低整车的操纵稳定性。必须找到一个平衡点,即保证操纵稳定性的优良,又能具备较好的平顺性。 悬架结构形式和性能参数的选择合理
3、与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。 1.2 悬架的组成 现代汽车,特别是乘用车的悬架,形式,种类,会因不同的公司和设计单位,而有不同形式。 但是,悬架系统一般由弹性元件、减振器、缓冲块、横向稳定器等几部分组成等。 3 它们分别起到缓冲、减振 、力的传递、限位和控制车 辆侧倾角度的作用。 弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,现代轿车悬架多采用螺旋弹簧,个别高级轿车则使用空气弹簧。螺旋弹簧只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩 擦而没有减
4、振作用。 这里我们选用螺旋弹簧。 减振器是为了加速衰减 由于弹性系统引起的 振动, 减振器有筒式减振器,阻力可调式新式减振器,充气式减振器。 它是悬架机构中最精密和复杂的机械件。 导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导4 向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特 性,改善汽车的操纵稳定性和行驶平顺性。 现代汽车悬架的发展十分快,不断出现,崭新的
5、悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,也就是说汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。 1.3悬架的分类: 汽车的悬架从大的方面来看,可以分为两类:非独立悬架和独立悬架系统。 图 2 独立悬架 1.3.1独立悬架 独立悬架是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所 采用的车桥是断开式的。这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。同时独
6、立悬架非簧载质量小,可提高汽车车轮的附着性。5 如图 2 所示。 独立悬架的类型及特点: 图 3 独立悬架 的车轴分成两段 (如图 3) ,每只车轮用螺旋弹簧独立地, 弹性地连接 安装在车架 (或车身 )下面 ,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。 现在,前悬架基本上都采用独立悬架系统,最常见的有双横臂式和滑柱摆臂式(又称麦弗逊式)。 双横臂式 图 4 双横臂式独立前悬架 工作原理:由上短下长两根横臂连接车轮与车身,通过选择比例合适的长度,可使车轮和主销的角度及轮距变化不大。 这种独立悬架被广泛应用在轿车前轮上。双横臂的臂有做成 A 字形或 V6 字
7、形, V 形臂的上下 2个 V 形摆臂以一定的距离,分别安装在车轮上,另一端安装在车架上。 优点:结构比较复杂,但经久耐用,同时减振器的负荷小,寿命长。可以承载较大负荷,多用于轻型小型货车的前桥。 缺点:因为有两个摆臂,所以占用的空间比较大。所以,乘用车的前悬架一般不用此种结构形式。 麦弗逊式(滑柱连杆式) 图 5 麦弗逊式独立前悬架 工作原理:这种悬架目前在轿车中采用很多。这种悬架将减振器作为引导车轮跳动的滑柱,螺旋弹簧与其装于一体。 这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移。内侧空间大,有利于发动机布置,并降低车子的重心。 7 车轮上下运动时,主销轴线的角度会有 变
8、化,这是因为减振器下端支点随横摆臂摆动。以上问题可通过调整杆系设计布置合理得到解决。 典型的结构如图 6 和 7。 图 6 麦弗逊悬架结构 1-减振器外筒 ;2-活塞杆 ;3-弹簧支座 ;4-横向稳定杆支架 ;5-横向稳定杆拉杆 ; 6-副车架 ;7-横向稳定杆 ;8-发动机支座 ;9-弹簧上支座 ;10-隔离座 ;11-辅助弹簧 ; 12-防尘罩 ;13-U 形夹 ;14-轴承 ;15-定位螺栓 8 图 7 麦弗逊悬架的另一种结构图 1-横向摆臂 ;2-球形支承 ;3-减振器外筒 ;4-弹簧 ;5-上 支承轴承 ;6-反跳缓冲弹簧 麦弗逊独立悬架的特点: 优点:技术成熟,结构紧凑,响应速度快
9、,占用空间少,便于装车及整车布局,多用于中低档乘用车的前桥。 缺点:由于结构过于简单,刚度小,稳定性较差,转弯侧倾明显,必须加装横向稳定器,加强刚度。 1.3.2非独立悬架 非独立悬架如图 8 所示。其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简9 化,降低成本。目前广泛应用于货车和大客车上,有些轿车 后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 图 8 1.4 悬架的国内外发展情况 汽车悬架的发展十分 迅速 ,不断出
10、现崭新的悬架装置。 正常情况 按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,20 世纪 80 年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能 主 动地控制垂直振动及其车身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。 随着当前世界汽车工业朝着高速、高性能、舒适、安全可靠的方向发展 ,空气悬架弹簧 是当今汽车发展的 一大 趋势,特别是在大型客车和载重汽车上尤为突出。其实,早在 20 世纪 50 年代,空气悬架弹簧就开始应用在载重车、小轿车、大客车及铁道车辆上。到 60 年代,德国、美国等工业发达国家生产的大部分公共汽车上装有了
11、主动式 空气弹簧悬架。 国内早在 20 世纪 60 年代就设计生产了空气弹簧悬架,但由于工业技术条件有限,当时生产的产品使用效果不甚理想,以后在很长一段时期,产品10 没有进一步发展,因此,国外生产空气悬架弹簧的厂家凭借着资金与技术优势进入国内市场,为国内生产豪华客车的厂家配套成熟的 主动式 空气弹簧悬架产品。 同 时 我国公路条件的改善为汽车悬架创造了基本的使用条件,并产生了很大的促进作用。高速公路的迅速发展、运输量的增加以及对高性能客车的需求,都对汽车的操纵稳定性、平顺性、安全性提出了更高的要求。此外,重型汽车对路面破坏机制的研究及认识的进一步加深,政府对高速公路养护的重视,限制超载逐步在
12、国内各地受到重视,这些因素都将促使 新型 悬架在重型车市场的应用将进一步扩大。 随着国内客车产品档次的逐步升级,空气悬架弹簧逐步被市场接受。目前,在国内有多家客车厂生产的豪华大客车装有空气悬架,如安凯、金龙客车、桂林大宇、合肥现代、杭州 客车等,。 由于 主动式 空气悬架弹簧价格较贵,为降低成本,有的企业部分车型前桥使用钢板弹簧,后桥使用空气悬架弹簧。 由此可知 悬架 正 充分关注这方面的变化,提高综合开发能力,以适应市场的需求和变化 ,新型悬架的诞生迫在眉睫。 2 悬架分析设计 2.1 悬架结构方案分析 2.1.1 独立悬架与非独立悬架结构形式的选择 为适应不同车型和不同类型车桥的需要,悬架有不同的结构型式 ,主要