UASB工艺系统设计方法探讨及设计计算.doc

上传人:h**** 文档编号:155997 上传时间:2018-07-12 格式:DOC 页数:23 大小:250KB
下载 相关 举报
UASB工艺系统设计方法探讨及设计计算.doc_第1页
第1页 / 共23页
UASB工艺系统设计方法探讨及设计计算.doc_第2页
第2页 / 共23页
UASB工艺系统设计方法探讨及设计计算.doc_第3页
第3页 / 共23页
UASB工艺系统设计方法探讨及设计计算.doc_第4页
第4页 / 共23页
UASB工艺系统设计方法探讨及设计计算.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、UASB 工艺系统设计方法探讨 简介: 本文全面的介绍了 UASB 系统的设计问题,介绍了厌氧预处理工艺和UASB 反应器的负荷设计原则和设计方法。重点介绍了混凝土结构的矩形UASB反应器各个部分尺寸的计算和确定原则。对 UASB 的进水配水系统和布水方式进行了详细的介绍。对于三相分离器和 UASB建筑材料等问题也进行讨论。 关键字: UASB 反应器,预处理,配水系统,三相分离器,建筑材料,设计 简介: 本文全面的介绍了 UASB 系统的设计问题,介绍了厌氧预处理工艺和UASB 反应器的负荷设计原则和设计方法。重点介绍了混凝土结构 的矩形UASB反应器各个部分尺寸的计算和确定原则。对 UAS

2、B 的进水配水系统和布水方式进行了详细的介绍。对于三相分离器和 UASB建筑材料等问题也进行讨论。 关键字: UASB 反应器,预处理,配水系统,三相分离器,建筑材料,设计 一、概述 厌氧处理已经成功地应用于各种高、中浓度的工业废水处理中。虽然中、高浓度的废水在相当程度上得到了解决,但是当 污水 中含有 抑制性物质时,如含有硫酸盐的味精废水在处理上仍有一定的难度。在厌氧处理领域应用最为广泛的是UASB反应器,所以本文重点讨论 UASB 反应器的 设计 方法。但是,其与其它的厌氧处理工艺有一定的共同点,例如,流化床和 UASB都有三相分离器。而 UASB 和厌氧滤床对于布水的要求是一致的,所以结

3、果也可以作为其他反应器设计参考。 包含厌氧处理单元的水处理过程一般包括预处理、厌氧处理 (包括沼气的收集、处理和利用 )、好氧后处理和污泥处理等部分,可以用图 1 所示的流程表示。 二、 UASB 系统设计 1、预处理设施 一般预处理系统包括粗格栅、细格栅或水力筛、沉砂池、调节 (酸化 )池、营养盐和 pH调控系统。格栅和沉砂池的目的是去除粗大固体物和无机的可沉固体,这对对于保护各种类型厌氧反应器的布水管免于堵塞 是必需的。当污水中含有砂砾时,例如以薯干为原料的酿酒废水,怎么强调去除砂砾的重要性也不过分。不可生物降解的固体,在厌氧反应器内积累会占据大量的池容,反应器池容的不断减少最终将导致系统

4、完全失效。 由于厌氧反应对水质、水量和冲击负荷较为敏感,所以对于工业废水适当尺寸的调节池,对水质、水量的调节是厌氧反应稳定运行的保证。调节池的作用是均质和均量,一般还可考虑兼有沉淀、混合、加药、中和和预酸化等功能。在调节池中设有沉淀池时,容积需扣除沉淀区的体积;根据颗粒化和 pH 调节的要求,当废水碱度和营养盐不够需要补充碱度 和营养盐 (N、 P)等;可采用计量泵自动投加酸、碱和药剂,通过调节池水力或机械搅拌达中和作用。 同时,酸化池或两相系统是去除和改变,对厌氧过程有抑制作用的物质、改善生物反应条件和可生化性也是厌氧预处理的主要手段,也是厌氧预处理的目的之一。仅考虑溶解性废水时,一般不需考

5、虑酸化作用。对于复杂废水,可在调节池中取得一定程度的酸化,但是完全的酸化是没有必要的,甚至是有害处的。因为达到完全酸化后,污水 pH 会下降,需采用投药调整 pH 值。另外有证据表明完全酸化对 UASB 反应器的颗粒过程有不利的影响。对以下情况考虑酸化 或相分离可能是有利的: 1) 当采用预酸化可去除或改变对甲烷菌有毒或抑制性化合物的 结构 时; 2) 当废水存在有较高的 Ca2+时,部分酸化可避免颗粒污泥表面产生 CaCO3 结垢; 3) 当处理含高含悬浮物和 /或采用高负荷,对非溶解性组分去除有限时; 4)在调节池中取得部分酸化效果可以通过调节池的合理设计取得。例如,上向流进水方式,在反应

6、器底部形 成污泥层 (1.0m)。底部布水孔口设计为 5 10m2/孔即可。 2、 UASB 反应器体积的设计 a)负荷设计法 采用有机负荷 (q)或水力停留时间 (HRT)设计 UASB 反应器是目前最为主要的方法。一旦 q 或 HRT确定,反应器的体积 (V)可以很容易根据公式 (1 或 2)计算。对某种特定废水,反应器的容积负荷一般应通过试验确定。 V = QSo/q (1) V =KQ.HRT (2) 式中: Q-废水流量, m3/d; So-进水有机 物浓度, gCOD/L或 gBOD5/L。 表 1 给出不同类型废水国内外采用 UASB 反应器处理的负荷数据,需要说明的是表中无法一

7、一注明采用的预处理条件和厌氧污泥类型等情况,这些条件对选择设计负荷是至关重要的。下表供设计人员设计时参考,选用前必须进行必要的实验和进一步查询有关的技术资料。 表 1 国内外生产性 UASB 装置的设计负荷统计表 序号 废水类型 负荷 kgCOD/m3 d (国外资料 ) 负荷 kgCOD/m3 d (国内资料 ) 平均 最高 最低 厂家数 平均 最高 最低 厂家数 1 酒精生产 11.6 15.7 7.1 7 6.5 20 2 15 2 啤酒厂 9.8 18.8 5.6 80 5.3 8 5 10 3 造酒厂 13.9 18.5 9.9 36 6.4 10 4 8 4 葡萄酒厂 10.2 1

8、2 8 4 5 清凉饮料 6.8 12 1.8 8 5 5 5 12 6 小麦淀粉 8.6 10.7 6.6 6 7 淀粉 9.2 11.4 6.4 6 5.4 8 2.7 2 8 土豆加工等 9.5 16.8 4 24 9 酵母业 9.8 12.4 6 16 6 6 6 1 10 柠檬酸生产 8.4 14.3 1 3 14.8 20 6.5 3 11 味精 3.2 4 2.3 2 12 再生纸、纸浆 12.3 20 7.9 15 13 造纸 12.7 38.9 6 39 14 食品加工 9.1 13.3 0.8 10 3.5 4 3 2 15 屠宰废水 6.2 6.2 6.2 1 3.1 4

9、 2.3 4 16 制糖 15.2 22.5 8.2 12 17 制药厂 10.9 33.2 6.3 11 5 8 0.8 5 18 家畜饲料厂 10.5 10.5 10.5 1 19 垃圾滤液 9.9 12 7.9 7 b) 经验公式方法 Lettinga 等人采用同样经验公式描述不同厌氧处理系统处理生活 污水 HRT与去除率 (E)之间的关系,并且对不同反应器处理生活污水的数据进 行了统计,得出了参数值。 式中: C1 ,C2 反应常数。 c) 动力学方法 许多研究者致力于动力学的研究, Henxen 和 Harremoes(1983)根据众多研究结果汇总了酸性发酵和甲烷发酵过程重要的动力

10、学常数 (见表 2)。到目前为止,动力学理论的发展,还没有使它能够在选择和 设计 厌氧处理系统过程中成为有力的工具,通过评价所获得的实验结果的经验方法现在仍是设计和优化厌氧消化系统的唯一的选择。 表 2 厌氧动力学参数 (Henxen和 Harremoes, 1982) 培养 mm(d-1) Y(mgVSS/mgCOD) KmmgCOD/(mgVSS?d) Ks(mgCOD/L) 产酸菌 2 0.15 13 200 甲烷菌 0.4 0.03 13 50 混合培养 0.4 0.18 2 - 3、 UASB 反应器的详细 设计 1) 反应器的体积和高度 采用水力停留时间进行设计时,体积 (V)按公

11、式 (1)或 (2)计算。选择反应器高度的原则是设计、运行和经济上综合考虑的结果。从设计、运行方面考虑:高度会影响上升流速,高流速增加系统扰动和污泥与进水之间的接触。但流速过高会引起污泥流失,为保持足够多的污泥,上升流速不能超过一定的限值,从而使反应器的高度受到限制 ;高度与 CO2 溶解度有关,反应器越高溶解的 CO2 浓度越高,因此, pH 值越低。如 pH 值低于最优值,会危害系统的效率。 从经济上考虑 :土方工程随池深增加而增加,但占地面积则相反;考虑当地的气候和地形条件,一般将反应器建造在半地下减少 建筑 和保温费用。最经济的反应器高度 (深度 )一般是在 4 到 6m 之间,并且在

12、大多数情况下这也是系统最优的运行范围。 2) 反应器的升流速度 对于 UASB 反应器还有其他的流速关系 (图 2)。对于日平均上升流速的推荐值见表 3,应该注意对短时间 (如 2 6h)的高峰值是可以承受的 (即暂时的高峰流量可以接收 )。 表 3UASB 和 EGSB 允许上升流速 (平均日流量 ) UASB反应器 Vr 0.253.0m/h 0.751.0m/h 颗粒污泥絮状污泥 Vs 1.5m/h 絮状污泥 8m/h 颗粒污泥 Vo 12m/h 颗粒污泥 3.0m/h 絮状污泥 Vg 1m/h 建议最小值 3) 反应器的截面积和反应器的 长、宽 (或直径 ) 在确定反应器的容积和高度

13、(H)之后,可确定反应器的截面积 (A)。从而确定反应器的长和宽,在同样的面积下正方形池的周长比矩形池要小,矩形 UASB需要更多的 建筑 材料。以表面积为 600m2 的反应器为例, 3020m的反应器与 15m40m 的反应器周长相差 10%,这意味着建筑费用要增加 10%。但从布水均匀性考虑,矩形在长 /宽比较大较为合适 。从布水均匀性和经济性考虑,矩形池在长 /宽比在 2:1 以下较为合适。长 /宽比在 4:1 时费用增加十分显著。 圆形反应器在同样的面积下,其周长比正方形的少 12%。但这一优点仅仅在采用单个池子时才成立。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。对于采

14、用公共壁的矩形反应器,池型的长宽比对 造价 也有较大的影响。如果不考虑其他因素,这是一个在 设计 中需要优化的参数。 4) 单元反应器最大体积和分格化的反应器 在 UASB 反应器的设计中,采用分格化对运行操作是有益的。首先,分格化的单元尺寸不会过大,可避免体积过大带来的布水均匀性等问题;同时多个反应器对系统的启动也是有益的,可首先启动一个反应器,再用这个反应器的污泥去接种其他反应器;另外,有利于维护和检修,可放空一个反应器进行检修,而不影响系统的运行。从目前实践看最大的单体 UASB 反应器 (不是最 优的 )可为 1000-2000m3。 5) 单元反应器的系列化 单元的标准化根据三相分离

15、器尺寸进行,三相分离器的型式趋向于多层箱体的 设备 化 结构 。以 25m的三相分离器为例,原则上讲有多种配合形式。但从标准化和系列化 考虑,要求具有通用性和简单性。所以,池子宽度是以 5m为模数,长度方向是以 2m为模数。布置单元尺寸的方式可分成单池单个分离器和单池两个分离器的形式。原则上如果采用管道或渠道布水,池子的长度是不受限制。如前所述,由于长宽比涉及到反应器的经济性,所以要结合池子组数考虑适当的长宽比。对宽度为 10m的单个反应器, 2:1 的长宽比的反应器可达到 2000m3 的池容。对更大的反应器,如果需要也可采用双池共用壁的型式。 三、反应器的配水系统的设计 1、配水孔口负荷

16、一个进水点服务的最大面积问题是应该进行深入的实验研究。 对于 UASB反应器 Lettinga 建议在完成了起动之后,每个进水点负担 2.0 到 4.0m2 对获得满意的去除效率是足够的。但是在温度低于 20 或低负荷的情况,产气率较低并且污泥和进水的混合不充分时,需要较高密度的布水点。对于城市 污水 De Man和 Van der Last (1990)建议 1 2m2/孔。表 4 是 Lettinga 等人根据 UASB 反应器的大量实践推荐 的进水管负荷。 表 4 采用 UASB 处理主要为溶解性废水时进水管口负荷 污泥典型 每个进水口负荷 (m2) 负荷(kgCOD/m3 d) 颗粒污

17、泥 0.5 1 2 1 2 2 4 2 4 凝絮状污泥 40kgDS/m3 6.5 1 2 中等浓度絮状污泥 120 40kg/m3 1 2 2 2、进水分配系统 进水分配系统的合理 设计 对 UASB 处理厂的良好运转是至关重要的,进水系统兼有配水和水力搅拌的功能,为了这两个功能的实现,需要满足如下原则:a) 确保单位面积的进水量基本相同,以防止短路等现象发生; b) 尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合; c) 很容易观察到进水管的堵塞;d) 当堵塞被发现后,很容易被清除。 在生产装置中采用的进水方式大致可分为间歇式 (脉冲式 )、连续流、连续与间歇相结合等方式;从布水管的

18、形式有一管多孔、一管一孔和分枝状等多种形式。1) 连续进水方式 (一管一孔 ) 为了确保进水均匀分布,每个进水管线仅仅与一个进水点相连接,是最为理想的情况 (图 3a)。为保证每一个进水点的流量相等,建议用高于反应器的水箱 (或渠道式 )进行分配,通过渠道或分配箱之间的三角堰来保证等量的进水。这种系统的好处是容易观察到堵塞情况。 2) 脉冲进水方式 我国 UASB 反应器 与国外的最为显著的特点是很多采用脉冲进水方式。有些研究者认为脉冲方式进水,使底层污泥交替进行收缩和膨胀,有助于底层污泥的混合。图 3a 为北京环科院采用的一种脉冲布水器的原理图,该系统借鉴了给水中虹吸滤池的布水方式。 3)

19、一管多孔配水方式 采用在反应器池底配水横管上开孔的方式布水,为了配水均匀,要求出水流速不小于 2.0m/s。这种配水方式可用于脉冲进水系统。一管多孔式配水方式的问题是容易发生堵塞,因此,应该尽可能避免在一个管上有过多的孔口。 4) 分枝式配水方式 这种配水系统的特点采用 较长的配水支管增加沿程阻力,以达到布水均匀的目的 (图 3c)。根据笔者的实践,最大的分枝布水系统的负荷面积为 54m2。大阻力系统配水均匀度好,但水头损失大。小阻力系统水头损失小,如果不影响处理效率,可减少系统的复杂程度。 对其他类型布水方式,我国也有很多设计和运行经验。与三相分离器一样,不同型式的布水装置之间,很难比较孰优

20、孰劣。事实上,各种类型的布水器都有成功的经验和业绩。 3、配水管道设计 对重力布水方式, 污水 通过三角堰进入反应器时可能吸入空气,会引起对甲烷菌的抑制;进入大量气体与产生的沼气会形成有爆炸可能的混合气体;同时,气泡太多可能还会影响沉淀功能。因为,大于 2.0mm 直径的气泡在水中以大约 0.2 0.3m/s 速度上升,采用较大的管径使液体在管道的垂直部分的流速低于这一数值,可适当地避免超过 2mm 直径的空气泡进入反应器,同时还可避免气阻。在反应器底部用较小直径,形成高的流速产生较强的扰动,使进水与污泥之间混合加强。 污水中存在大的 物体可能堵塞进水管,设计良好的进水系统要求可疏通堵塞;对于

21、压力流采用穿孔管布水器 (一管多孔或分枝状 ),需考虑设液体反冲洗或清堵装置,可采用停水分池分段反冲;采用一管多孔布水管道,布水管道尾端最好兼作放空和排泥管,以利于清除堵塞;采用重力流布水方式 (一管一孔 ),如果进水水位差仅仅比反应器的水位稍高 (水位差小于 10cm)将经常发生堵塞。在水箱中的水位 (三角堰的底部 )与反应器中的水位差大于 30cm 很少发生这种堵塞。无论采用那一种布水方式,尽可能少地采用弯头等非直管。 四、气、固、液三相分离装置 三相分离器是 UASB 反应器最有特点和最重要的装置。它同时具有两个功能: 1) 能收集从分离器下的反应室产生的沼气; 2) 使得在分离器之上的悬浮物沉淀下来。 三相分离器设计要点汇总: 1) 集气室的隙缝部分的面积应该占反应器全部面积的 15 20;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。