线代4-2---工程数学.ppt

上传人:99****p 文档编号:1560372 上传时间:2019-03-05 格式:PPT 页数:16 大小:715KB
下载 相关 举报
线代4-2---工程数学.ppt_第1页
第1页 / 共16页
线代4-2---工程数学.ppt_第2页
第2页 / 共16页
线代4-2---工程数学.ppt_第3页
第3页 / 共16页
线代4-2---工程数学.ppt_第4页
第4页 / 共16页
线代4-2---工程数学.ppt_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、第四章课前复习课前复习、定义、定义 个数 组成的有序数组称为一个 维向量 ,其中 称为第 个 分量 ( 坐标 ) .记作维向量写成一行称为 行向量 ,记作维向量写成一列称为 列向量 ,、几种特殊向量、几种特殊向量实向量, 复向量,零向量,单位向量,向量同型,向量相等 .注意什么是向量的个数、什么是向量的维数,二者必须分清 .、矩阵与向量的关系、矩阵与向量的关系若干个同维数的列向量(或同维数的行向量)所组成的集合叫做 向量组 、向量组、向量组、向量空间、向量空间设 为维非空向量组,且满足 对加法封闭对数乘封闭那么就称集合 为 向量空间 .、向量的运算、向量的运算向量的运算与采用矩阵的运算规律 .

2、一、向量的线性相关性一、向量的线性相关性1、基本概念、基本概念定义 给定向量组 ,对于任何一组数,称向量 为向量组的一个 线性组合 ( Linear Combination) . 为组合的 组合系数 ( Combination Coefficient) .定义 设向量组 及向量 有关系则 称为向量组的一个 线性组合 ,或称 可由向量组 线性 表示 ( Linear Expression) .称为 在该 线 性组合下的组合系数 .例如:有所以,称 是 的线性组合,或 可以由 线性表示。 若 k ,则称向量 与 成比例 零向量 是任一向量组的线性组合 任一维向量 都是 基本向量组的一个线性组合 向

3、量 可由 线性表示,即方程组事实上,有 向量组中每一向量都可由该向量组线性表示有解 .令方程组可表示为则方程组的向量表示为定义 III 设维向量组为零的数 ,使得则称向量组,如果存在不全线性相关 ( Linear Dependent) .反之,若当且仅当 ,才有则称向量组线性无关 ( Linear Independent) . 单独一个向量线性相关当且仅当它是零向量 单独一个向量线性无关当且仅当它是非零向量 一向量组中存在一个 向量,则一定线性相关 一个向量组中若部分向量线性相关,则整个向量组也线性相关;一个向量组若线性无关,则它的任何一个部分组都线性无关 (部分相关,整体相关;整体无关,部分无关) 对于一个向量组,不是线性相关就是线性无关 几何上:两向量线性相关 两向量共线; 两向量线性相关 两向量对应成比例三向量线性相关 三向量共面 . 两向量线性无关 两向量不对应成比例例 1: n维向量讨论它们的线性相关性 .结论 : 线性无关解 :上述向量组又称基本向量组 或 单位坐标向量组 .问题 : n=3时,分别是什么?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。