卫生统计学_赵耐青习题答案.doc

上传人:h**** 文档编号:167839 上传时间:2018-07-13 格式:DOC 页数:77 大小:401.51KB
下载 相关 举报
卫生统计学_赵耐青习题答案.doc_第1页
第1页 / 共77页
卫生统计学_赵耐青习题答案.doc_第2页
第2页 / 共77页
卫生统计学_赵耐青习题答案.doc_第3页
第3页 / 共77页
卫生统计学_赵耐青习题答案.doc_第4页
第4页 / 共77页
卫生统计学_赵耐青习题答案.doc_第5页
第5页 / 共77页
点击查看更多>>
资源描述

1、习题答案 第一章 一、是非题 1. 家庭中子女数是离散型的定量变量。 答:对。 2. 同质个体之间的变异称为个体变异。 答:对。 3. 学校对某个课程进行 1 次 考试,可以理解为对学生掌握该课程知识的一次随机抽样。 答:对。 4. 某医生用某个新药治疗了 100 名牛皮 癣 患者,其中 55 个人有效,则该药的有效率为 55%。 答:错。只能说该样本有效率为 55或称用此药总体有效率的样本估计值为 55%。 5.已知在某个人群中,糖尿病的患病率为 8%,则可以认为在该人群中,随机抽一个对象, 其患糖尿病的概率为 8%。 答:对,人群的患病率称为总体患病率。在该人群中随机抽取一个对象,每个对象

2、均有相 同的机会被抽中,抽到是糖尿病患者的概率为 8。 二、选择题 1. 下列属于连续型变量的是 A 。 A 血压 B 职业 C 性别 D 民族 2. 某高校欲了解大学新生心理健康状况,随机选取了 1000 例大学新生调查,这 1000 例大 学生新生调查问卷是 A 。 A 一份随机样本 B 研究总体 C 目标总体 D 个体 3. 某研究用 X 表示儿童在一年中患感冒的次数,共收集了 1000 人,请问:儿童在一年中 患感冒次数的资料属于 C 。 A 连续型资料 B 有序分类资料 C 不具有分类的离散型资料 D 以上均不对 4. 下列描述中,不正确的是 D 。 A 总体中的个体具有同质性 B

3、总体中的个体大同小异 C 总体中的个体在同质的基础上有变异 D 如果个体间有变异那它们肯定不是来自同一总体 5用某个降糖药物对糖尿病患者进行治疗,根据某个大规模随机抽样调查的研究结果得 到该药的降糖有效率为 85%的结论,请问降糖有效率是指 D 。 A 每治疗 100 个糖尿病患者,正好有 85 个人降糖有效, 15 个人降糖无效 B 每个接受该药物治疗的糖尿 病患者,降糖有效的机会为 85% C 接受该药物治疗的糖尿病人群中,降糖有效的比例为 85% D 根据该研究的入选标准所规定的糖尿病患者人群中,估计该药降糖有效的比例为 85% 三、简答题 1. 某医生收治 200 名患者,随机分成 2

4、 组,每组 100 人。一组用 A 药,另一组用 B 药。 经过 2 个月的治疗, A 药组治愈了 90 人, B 组治愈了 85 名患者,请根据现有结果评议 下列说法是否正确,为什么? a)A 药组的疗效高于 B 药组。 b)A 药的疗效高于 B 药。 答: a)正确,因为就两组样本而言,的确 A 组疗 效高于 B 组。 b) 不正确,因为样本的结果存在抽样误差,因此有可能人群的 A 药疗效高于 B 药,也 可能人群的两药的疗效相同甚至人群 B 药的疗效高于 A 药, 2. 某校同一年级的 A 班和 B 班用同一试卷进行一次数学测验。经过盲态改卷后,公布成 绩: A 班的平均成绩为 80 分

5、, B 班的平均成绩为 81 分,请评议下列说法是否正确,为 什么? a)可以称 A 班的这次考试的平均成绩低于 B 班,不存在抽样误差。 b)可以称 A 班的数学平均水平低于 B 班。 答: a) 正确,因为此处将 A 班和 B 班作为研究总体,故不存 在抽样误差。 b)不正确,因为这一次数学平均成绩只是两班数学成绩总体中的两个样本,样本的差异 可能仅仅由抽样误差造成。 3. 在某个治疗儿童哮喘的激素喷雾剂新药的临床试验中,研究者收集了 300 名哮喘儿童患 者,随机分为试验组和对照组,试验组在哮喘缓解期内采用激素喷雾剂,在哮喘发作期 内采用激素喷雾剂扩展气管药;对照组在哮喘缓解期不使用任何

6、药物,在哮喘发作期 内采用扩展气管药物。通过治疗 3 个月,以肺功能检查中的第 1 秒用力呼吸率 ( FEV1/FRC1)作为主要有效性评价指标,评价两种治疗方案的有效性和安 全性。请阐 述这个研究中的总体和总体均数是什么? 答:试验组的研究总体是接受试验组治疗方案的全体哮喘儿童患者在治疗 3 个月时的 FEV1/FRC1 值的全体。对照组的研究总体是接受对照组治疗方案的全体哮喘儿童患者 在治疗 3 个月时的 FEV1/FRC1 值的全体。 试验组对应的总体均数是接受试验组治疗方案的全体哮喘儿童患者在治疗 3 个月时的 FEV1/FRC1 的平均值;对照组对应的总体均数是接受对照组治疗方案的全

7、体哮喘儿童 患者在治疗 3 个月时的 FEV1/FRC1 的平均值。 4. 请简述什么是小概率事件? 对于一次随机抽样,能否认为小概率事件是不可能发生的? 答:在统计学中,如果随机事件发生的概率小于或等于 0.05,则通常可以认为是一个小 概率事件,表示该事件在大多数情况下不会发生,并且一般可以认为小概率事件在一次随机 抽样中不会发生,这就是小概率事件原理。小概率事件原理是统计学检验的基础。 5. 变量的类型有哪几种?请举例说明,各有什么特点? 答:( 1) 连续型变量,可以一个区间中任意取值的变量,即在忽略测量精度的情况下, 连续型变量在理论上可以取到区间中的任意一个值,并且通常含有测量单位

8、。观察连续型变 量 所得到的数据资料称为计量资料 (measurement data)。如例 1-1 中的身高变量就是连续型变 量,身高资料为计量资料。 .( 2) 离散型变量, 变量的取值范围是有限个值或者为一个数 列。离散型变量的取值情况可以分为具有分类性质的资料和不具有分类性质的资料,表示分 类情况的离散型变量亦称分类变量 (categorical variable)。观察分类变量所得到的资料称为分 类资料 (categorical data)。分类资料可以分为二分类资料和多分类资料,而多分类资料又分成 无序分类资料和有序分类资料, 二分类资料如症状指标分为感染或未感染,无序多分类资料

9、(nominal data) 如血型可以分为 A、 B、 AB 和 O 型,有序多分类资料 (ordinal data) 如病情指 标分为无症状、轻度、中度和重度。 第二章 一、是非题 1不论数据呈何种分布,都可以用算术均数和中位数表示其平均水平。 答:错。只有资料满足正态或近似正态分布时计算算术均数是比较有统计学意义的。 2在一组变量值中少数几个变量值比大多数变量值大几百倍,一般不宜用算术均数表示其 平均水平。 答:对,可以采用中位数表示。 3只要单位相同 ,用 s 和用 CV 来表示两组资料的离散程度,结论是完全一样的。 答:错,标准差 S 是绝对误差的一种度量,变异系数 CV 是相对误差

10、的一种度量,对于两组 资料离散程度的比较,即使两组资料的度量单位相同,也完全有可能出现两个指标的结论是 不同的。在实际应用时,选择离散程度的指标时,考虑其结果是否有研究背景意义。例如: 一组资料为成人的身高观察值,另一组资料为 2 岁幼儿的身高观察值,虽然可以用标准差 S 比较两组的离散程度,也不能认为这是错误的,但根本没有研究背景意义,相反选择变异系 数 CV 比较两组资料的相对变异程 度,这就有一定的研究背景意义。 4描述 200 人血压的分布,应绘制频数图。 答:对。 5. 算术均数与中位数均不容易受极值的影响。 答:错。算术均数比中位数容易受到极值的影响。 二、选择题 1中位数是表示变

11、量值 A 的指标。 A 平均水平 B 变化范围 C 频数分布 D 相互间差别大小 2对于最小组段无确定下限值和(或)最大组段无确定上限值的频数分布表资料,宜用下 列哪些指标进行统计描述? C _ A 中位数,极差 B 中位数,四分位数间距 C 中位数,四分位数范围 D 中位数,标准差 3描述年龄(分 8 组)与疗效(有效率)的关系,应绘制 A 。 A线图 B. 圆图 C. 直方图 D. 百分条图 4、为了描述资料分布概况,绘制直方图时,直方图的纵轴可以为 D 。 A 频数 B 频率 C 频率密度 (频率 /组距 ) D 都可以 三、简答与分析题 1 100 名健康成年女子血清总蛋白含量( g/

12、L)如表 2-14,试描述之。 表 2-12 100 名成年健康女子血清总蛋白含量( g/L) 73.5 74.3 78.8 78.0 70.4 80.5 84.3 68.8 69.7 71.2 72.0 79.5 75.6 78.8 72.0 72.0 72.7 75.0 74.3 71.2 68.0 75.0 75.0 74.3 75.8 65.0 67.3 78.8 71.2 69.7 73.5 73.5 75.8 64.3 75.8 80.3 81.6 72.0 74.3 73.5 68.0 75.8 72.0 76.5 70.4 71.2 67.3 68.8 75.0 70.4 74

13、.3 70.4 79.5 74.3 76.5 77.6 81.2 76.5 72.0 75.0 72.7 73.5 76.5 74.7 65.0 76.5 69.7 73.5 75.4 72.7 72.7 67.2 73.5 70.4 77.2 68.8 74.3 72.7 67.3 67.3 74.3 75.8 79.5 72.7 73.5 73.5 72.0 75.0 81.6 74.3 70.4 73.5 73.5 76.5 72.7 77.2 80.5 70.4 75.0 76.5 答:制作频数表如下: _ 组段 频数 百分比 累积频数 累积百分比 _ 64 3 3.00 3 3.00

14、 66 5 5.00 8 8.00 68 8 8.00 16 16.00 70 11 11.00 27 27.00 72 25 25.00 52 52.00 74 24 24.00 76 76.00 76 10 10.00 86 86.00 78 7 7.00 93 93.00 80 6 6.00 99 99.00 84 1 1.00 100 100.00 变量 例数 均数 标准差 最小值最大值中位数 25 百分位数 75 百分位数 x 100 73.7 3.925 64.3 84.3 73.5 71.2 75.8 2某医师测得 300 名正常人尿汞值( ng/L)如表 2-15,试描述资料。

15、 表 2-13 300 名正常人尿汞值( ng/L) 尿 汞 例 数 累计例数 累计百分数( %) 0 49 49 16.3 4 27 76 25.3 8 58 134 44.7 12 50 184 61.3 16 45 229 76.3 20 22 251 83.7 24 16 267 89.0 28 10 277 92.3 32 7 284 94.7 36 5 289 96.3 40 5 294 98.0 44 0 294 98.0 48 3 297 99.0 52 0 297 99.0 56 2 299 99.7 60 1 300 100.0 合计 300 答:根据资料给出统计描述的指标

16、如下: 例数 均数 标准差 最小值 最大值 16 15.053 49.014 2 62 对于同一的非负样本资料,其算数均数一定大于等于几何均数。 答:根据初等数学中的不等式 1 2 1 2 n n n a a a a a a n + + + ,可以得到算数均数一定大于 等于几何均数。 常用的描述集中趋势的指标有哪些,并简述其适用条件。 答:( 1)算术均数:适用对称分布,特别是正态或近似正态分布的数值变量 资料。 ( 2)几何均数:适用于频数分布呈正偏态的资料,或者经对数变换后服从正态分布(对数 正态分布)的资料,以及等比数列资料。 ( 3)中位数:适用各种类型的资料,尤其以下情况: A 资料

17、分布呈明显偏态; B 资料一端或两端存在不确定数值(开口资 料或无界资料); C 资料分布不明。 第三章 一、 是非题 1. 二项分布越接近 Poisson 分布时,也越接近正态分布。 答:错。当二项分布的 不太接近 0或者 1,随着 的增大, n 和 n(1 )均较大时, 二项分布的 X 的逐渐近似正态分布; n 较大, 较小,二项分布的 X 近似总体均数为 = n 的 Poisson 分布,只有 n较大、 较小并且 n 较大时,二项分布的 X 既近似 Poisson 分布又近似正态分布,其本质是当 n 较大、 较小时二项分布的 X 所近似的 Poisson 分布在其总体均数 = n 较大时

18、逼近正态分布。 2. 从同一新生儿总体(无限总体)中随机抽样 200 人,其中新生儿窒息人数服从二项 分布。 答:对。因为可以假定每个新生发生窒息的概率 是相同的并且相互独立,对于随机抽 取 200 人,新生儿窒息人数 X 服从二 项分布 B(n, )。 3. 在 n 趋向无穷大、总体比例 趋向于 0,且 n 保持常数时的二项分布的极限分布是 Poisson 分布。 答: 对。这是二项分布的性质。 4. 某一放射物体,以一分钟为单位的放射性计数为 50, 40, 30, 30, 10,如果以 5 分 钟为时间单位,其标准差为 160 5 。 答:错。设 i X 服从总体均数为 的 Poisso

19、n 分布, i = 1,2,3,4,5,并且相互独立。根据 Poisson 分布的可加性, 1 2 3 4 5 X + X + X + X + X 服从总体均数 为 5 , _其总体方差为 5 ,本题 5 分钟的总体方差 5 的估计值为 50 + 40 + 30 + 30 +10 = 160,所以其标准 差为 160 。 5. 一个放射性物体一分钟脉冲数为 20 次,另一个放射性物体一分钟脉冲数为 50 次。 假定两种放射性物体的脉冲性质相同,并且两种放射性物体发生脉冲是相互独立的, 则这两种物体混合后,其一分钟脉冲数的总体均数估计值为 70 次。 答:对。根据 Poisson 分布的可加性,

20、 这两种物体混合后的发生的脉冲数为 1 2 X + X , 混 合后一 分钟脉冲数的总体均数估计值为 20+50 70 次。 6. 一个放射性物体平均每分钟脉冲数为 5 次(可以认为服从 Poisson 分布),用 X 表示 连续观察 20 分钟的脉冲数,则 X 也服从 Poisson 分布。 答:对,这是 Poisson 分布的可加性。 7. 一个放射性物体平均每分钟脉冲数为 5 次(可以认为服从 Poisson 分布),用 X 表示 连续观察 20 分钟的脉冲数,则 X 的总体均数和总体方差均为 100 次。 答:对。 Poisson 分布的可加性原理。 8. 用 X 表示某个放射性物体的

21、每分钟脉冲 数,其平均每分钟脉冲数为 5 次(可以认为 服从 Poisson 分布),用 Y 表示连续观察 20 分钟的脉冲数,则可以认为 Y 近似服从正 态分布,但不能认为 X 近似服从正态分布。 答:对。因为 Y 的总体均数为 100,当 比较小的时候, Poisson 分布是一个偏态的分布, 但是当 增大时, Poisson 分布会逐渐趋于对称。 二、 选择题 1. 理论上,二项分布是一种 B。 A 连续性分布 B 离散分布 C 均匀分布 D 标准正态分布 2. 在样本例数不变的情况下,下列何种情况时,二项分布越接近对称分布。 C A 总体率 越大 B 样本率 P 越大 C 总体率 越接

22、近 0.5 D 总体率 越小 3. 医学上认为人的尿氟浓度以偏高为不正常,若正常人的尿氟浓度 X 呈对数正态分 布, Y = lgX , G 为 X 的几何均数,尿氟浓度的 95%参考值范围的界值计算公式是 A 。 A lg 1( 1.64 ) Y Y + S B + 1.96 X G S C + 1.64 X G S D lg 1( 1.96 ) Y Y + S 4. 设 1 2 10 X , X , X 均 服 从 B(4,0.01) , 并 且 1 2 10 X , X , X 相 互 独 立 。 令 1 2 10 Y = X + X + X ,则 D A Y 近似服从二项分布 B Y

23、近似服从 Poisson 分布 C Y 近似服从正态分布 D Y B(40,0.01) 5. 设 1 2 10 X , X , X 均服从 Poisson(2.2) ,并且 1 2 10 X , X , X 相互独立。令 1 2 10 Y = (X + X + X ) /10,则 C A Y 近似服从 B(10,0.22) B Y 服从 Poisson(22)分布 C Y 近似服从正态分布 D Y 服从 Poisson(2.2)分布 三、 简答题 1. 如果 X 的总体均数为 ,总体标准差为 ,令 Y a+bX,则可以证明: Y 的总体均 数为 a+b ,标准差为 b 。如果 X 服从 40

24、的 Poisson 分布,请问: Y = X /2 的总体 均数和标准差是多少? 答:总体均数 =20,总体标准差 = 40 / 2。 2. 设 X 服从 40 的 Poisson 分布,请问: Y = X /2 是否服从 Poisson 分布?为什么? 答:不是的。因为 Y = X /2 的总体均数 =20,不等于总体方差 10。 3. 设 X 服从 40 的 Poisson 分布,可以认为 X 近似服从正态分布。令 Y = X /10, 试问:是否可以认为 Y 也近似服从正态分布? 答:正态分布的随机变量乘以一个非 0 常数仍服从正态分布,所以可以认为 Y 也近似 服从正态分布。 4. 设

25、 X 服从均数为 的 Poisson 分布。请利用两个概率之比: P(X +1) / P(X ),证明: 当 x 时,概率 P(X )随着 X 增大 而减小。 答: 1 ( 1)/( ) ( )/ /( 1) ( 1)! ! x x P X x P X x e e x x x + = + = = = + + , 显然, 当 x + ,所以 P(X = x +1) / P(X = x) 1, 说 明 概 率 P(X ) 随 着 X 增 大 而 增 加 ; 当 X 时 , 则 ( 1)/( ) 1 1 P X x P X x x x = + = = 时,概率 P(X )随着 X 增大而减 小。 5

26、. 已知某饮用水的合格标准是每升水的大肠杆菌数 2 个,如果随机抽取 1 升饮用水, 检测出大肠杆菌数的 95参考值范围是多少?(提示考虑合格标准的总体均数最大值 为 2 个 /L,求 95参考值范围)。 答:由于合格标准的总体均数最大值为 2 个 /L,对于正常而言,大肠杆菌数越少越好, 所以这是单侧参考值范围。即求满足累计概率的不等式 2 0 0 ( | 2) 2 0.95 ! X X k k k P k e k = = = = 的最大 X 的解。 X 0 1 2 3 4 5 6 P(X ) 0.135335 0.270671 0.270671 0.180447 0.090224 0.03

27、6089 0.01203 0 ( ) X k P k = 0.135335 0.406006 0.676676 0.857123 0.947347 0.983436 0.995466 根据上述计算得到 X 的 95参考值范围是 X 5个 /L。? 第四章 一、是非题 1、设 X 的总体均数为 ,则样本均数 X 的总体均数也为 。 答:对。经随机抽样得到的样本均数 X 的总体均数也为 。 2、设 X 的总体方差为 2,则样本均数 X 的总体方差也为 2。 答:错。经随机抽样后得到的样本均数 X 的总体方差为 2/n。 3、设 随 机 变 量 1, , n X X 均服从 B(1, ) , n 很

28、大时,则 1 1 n i i X X n = = 近似服从 N( , (1 ) / n) 答:对。 4、某研究者做了一个儿童血铅浓度的流行病学调查,共调查了 1000 人,检测了每个人血 铅浓度。虽然血铅检浓度一般呈非正态分布,但由于该 研究样本量很大,可以认为这些 血铅浓度近似服从正态分布。 答:错。血铅浓度的分布与样本量是否很大无关,如果样本量充分大时,血铅浓度的样本均 数的分布近似正态分布。 5、某研究者做了一个儿童血铅浓度的流行病学调查,共调查了 1000 人,检测了每个人血 铅浓度,计算这 1000 人的血铅平均浓度。对于现有的 1000 人的血铅浓度资料,可以认 为该资料的样本均数

29、近似服从正态分布。 答: 错。样本均数的概率分布是指随机抽样前将要随机抽取的样本,其样本均数近似服从 某个概率分布,样本量很大时,样本均数逼近正态分布。对 于这个资料而言,这是已经完成 随机抽样的资料,这个资料的样本均数只是一个数,不存在服从哪种分布的问题。 6、某研究者做了一个儿童血铅浓度的流行病学调查,已知血铅测量值非正态分布,计划调 查 1000 人,并将计算 1000 人的血铅浓度的样本均数,由于该研究样本量很大,可以认 为随机抽样所获得血铅浓度的样本均数将近似服从正态分布。 答:对。如果从某个均数为 ,标准差为 的非正态分布的总体中抽样,只要样本量足够大, 则样本均数 X 的分布也将

30、近似于正态分布 N( , 2 / n)。 二、选择题 1、以下方法中唯一 可行的减小抽样误差的方法是 _B_。 A、减少个体变异 B、增加样本量 C、设立对照 D、严格贯彻随机抽样的原则 2、 X S 表示 _C_。 A、总体均数的离散程度 B、总体标准差的离散程度 C、样本均数的离散程度 D、样本标准差的离散程度 3、设连续性随机变量 X的总体均数为 ,从 X总体中反复随机抽样,随样本量 n 增大, X X S 将趋于 _D_。 A、 X 的原始分布 B、正态分布 C、均数的抽样分布 D、标准正态分布 4、在均数为 ,标准差为 的正态总体中随机抽样 ,理论上 | X | _B_的可能性 为

31、5%。 A、 1.96 B 1.96 X C、 0.05/ 2,v t S D 1.96 X S 5、下面关于标准误的四种说法中,哪一种是不正确 _C_。 A、标准误是样本统计量的标准差 B、标准误反映了样本统计量的变异 C、标准误反映了总体参数的变异 D、标准误反映了抽样误差的大小 6、变量 X 偏离正态分布,只要样本量足够大,样本均数 _C_。 A、偏离正态分布 B、服从 F 分布 C、近似正态分布 D、服从 t 分布 三、 简答题 1、样本均数的抽样误差定义是什么? 答:样本均数的抽样误差是指样本均数和总体均数间的差异,但同时可以表现为从同一总体 中多次随机抽样所得的样本均数间的差异,通

32、常用样本均数的标准误度量平均的抽样误差大 小。 2、估计样本均数的平均抽样误差的统计量是什么? 答:是样本均数的标准差,即样本均数的标准误。 3、简述样本均数的抽样误差的规律?。 答:样本均数的标准误的理论值为 x n = ,而其估计值为 X S S n = ; 4、简述 t 分布、 F 分布, 2 分布曲线的特征与自由度的关系。 答: t 分 布是一簇以 0 为中心,左右对称的单峰曲线,随着自由度的增加, t 分布曲线将越 来越接近于标准正态分布曲线,当自由度为无穷大时, t 分布就是标准正态分布。 t 分布的 曲线下两侧尾部的面积可以通过查对应自由度下的 t 分布界值表得到。 2 分布的图

33、形为一簇单峰正偏态分布曲线,且随着自由度的增加,正偏的程度越来越小。 2 分布的曲线下右侧尾部的面积可通过查 2 界值表得到。 F 分布的特征有:( 1) F 分布有两个自由度, F 的取值范围为 0。( 2) F 分布为一 簇单峰正偏态分布曲线,与两个自由度有关。( 3)每 一对自由度下的 F 分布曲线下面积, 见方差分析用 F 界值表 (附表 4),横标目为第一自由度,纵标目为第二自由度,表中分别给 出了概率为 0.05 和 0.01 时的 F 界值,记为 , 1 , 2 F 。 t 分布, 2 分布和 F 分布是三种没有未知参数,只有自由度的概率分布,常用于抽样研 究中,故称为三种常见的抽样分布。 5、简述正态分布、 t 分布、 F 分布、 2 分布之间的关系。 答:( 1)若随机变量 X 服从于正态分布 N ( , 2 ),那么从总体中随机抽取的样本,其样本 均数 X 将服从于正态分 布 ( , 2 ) X N 。令 Z 为对 X 进行标准化变换的结果,Z 将服从于标 准正态分布,即

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 复习参考

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。