1、 生化复习资料 第一章 一、 蛋白质的生理功能 蛋白质是生物体的基本组成成分之一,约占人体固体成分的 45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。 二、 蛋白质的分子组成特点 蛋白质的基本组成单位是氨基酸 编码氨基酸 :自然界存在的氨基酸有 300 余种,构成人体蛋白质的氨基酸只有 20 种,且具有自己的遗传密码。 各种蛋白质的含氮量很接近,平均为 16 。 每 100mg 样品中蛋白质含量( mg%) :每克样品
2、含氮质量( mg) 6.25 100。 氨基酸的分类 所有的氨基酸均为 L 型氨基酸(甘氨酸)除外。 根据侧链基团的结构和理化性质, 20 种氨基酸分为四类。 1 非极性疏水性氨基酸:甘氨酸( Gly)、丙氨酸( Ala)、缬氨酸( Val)、亮氨酸( Leu)、异亮氨酸( Ile)、苯丙氨酸( Phe)、脯氨酸( Pro)。 2 极性中性氨基酸:色氨酸( Trp)、丝氨酸( Ser)、酪氨酸( Tyr)、半胱氨酸( Cys)、蛋氨酸( Met)、天冬酰胺( Asn)、谷胺酰胺( gln)、苏氨酸( Thr)。 3 酸性氨基酸:天冬氨酸( Asp)、谷氨酸( Glu)。 4 碱性氨基酸:赖氨酸
3、( Lys)、精氨酸( Arg)、组氨酸( His)。 含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基 SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。 芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。 唯一的亚氨基酸:脯氨酸,其存在影响 -螺旋的形成。 营养必需氨基酸: 八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。 氨基酸的理 化性质 氨基酸的两性解离性质: 所有的氨基酸都含有能与质子结合成 NH4 的氨基;含有能与羟基结合成为 COO 的羧基,因此,在水溶液中,它具有两性解离的特性
4、。在某一 pH 环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的 pH 值称为该氨基酸的等电点( pI),氨基酸带有的净电荷为零,在电场中不泳动。 pI 值的计算如下: pI 1/2( pK1 + pK2) ,(pK1和 pK2分别为 -羧基和 -氨基的解离常数的负对数值 )。 氨基酸的紫外吸收性质 吸收波长: 280nm 结构特点:分子中含有共轭双键 光谱吸收能力:色氨酸酪氨酸苯丙氨酸 呈色反应: 氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在 570nm 波长处有最大吸收峰;蓝紫色化合物(氨基酸加热分解的氨)(茚三酮的还原产物)(一分子茚三酮)。 肽的相关概
5、念 寡 肽: 小于 10 分子氨基酸组成的肽链。 多 肽: 大于 10 分子氨基酸组成的肽链。 氨基酸残基: 肽链中因脱水缩合而基团不全的氨基酸分子。 肽 键: 连接两个氨基酸分子的酰胺键。 肽单元: 参与肽键的 6个原子 C 1、 C、 O、 N、 H、 C 2位于同一平面,组成肽单元。 三、 蛋白质分子结构特点 见表 1-1。 表 1-1 蛋白质分子结构的比较 一级结构 二级结构 三级结构 四级结构 定 义 指蛋白质分子中氨基酸的排列顺序 蛋白质主链的局部空间结构、不涉及氨基酸残基侧链构象 整条肽链中所有原子在三维空间的排布位置 各亚基间的空间排布 表现形式 -螺旋、 -折叠(片层)、 -
6、转角、无规卷曲 结构域、模 体 (锌指结构) 亚基聚合 维系键 肽 键 (主要 ) 二硫键 (次要 ) 氢 键 次级键(疏水作用、盐键、氢键、范德华力) 亚基间的次级键 特 殊 脯氨酸的存在或者多个谷、天冬氨酸的存在都会干扰 -螺旋的形成 模 体: 蛋白质分子中,由两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象并发挥特定的作用。 锌指结构:是一个典型的模体,由一个 -螺旋和二个反平衡的 -折叠的 3 个肽段组成,具有结合锌离子的功能。 分子伴侣: 能够可逆地与未折叠肽段的疏水部分结合随后松开,引导肽链正确折叠的存在于细胞内的一类蛋白质,也对蛋白质二硫键正确形成起到重要作用。
7、 四、 蛋白质一级结构与空间结构的关系 一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。 分子病: 由于蛋白质分子一级结 构发生改变,导致其功能改变而产生的疾病。 五、 蛋白质空间结构与功能的关系 蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。 血红蛋白( Hb)由四个亚基组成,两个亚基,两个亚基。记忆要点如下: 血红蛋白分子存着紧张态( T)和松弛态( R)两种不同的空间构象。 T 型和氧分子亲和力低, R型与氧分子的亲和力强,四个亚基与氧分子结合的能力不一样。 第一个亚基与氧分子结合后,使 Hb 分子空间构象发生变化,引起后一个亚基与氧分子结合能
8、力加强 (正协同效应 )。 肌红蛋白分子只有一个亚基,不存在变构效应 协同效应 :指一个亚 基与其配体结合后,能影响此寡聚体中的另一个亚基与配体的结合能力。促进作用则为正协同效应;反之为负协同效应。 变构效应: 蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象。 结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 疯牛病:是由朊病毒蛋白引起的一组人和动物神经退行性病变,具有传染性、遗传性或散在发病的特点。生物体内含有正常的 -螺旋形式的 PrPc,转变为异常的 -折叠形式的 PrPSc 具有致病性。 六、 蛋白质重要的理
9、化性质及相关概念 蛋白质的等电点: 当蛋白质在某一 pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的 pH 值称为蛋白质的等电点。 体内的蛋白质等电点各不相同,大多数接近于 pH5.0 碱性蛋白质:鱼精蛋白、组蛋白 酸性蛋白质:胃蛋白酶、丝蛋白 蛋白质处于大于其等电点的 pH 值溶液中时,蛋白质颗粒带负电荷。反之则带有正电荷。 蛋白质胶体溶液稳定的两个因素:水化膜、表面电荷。 蛋白质的变性: 在某些物理和化学因素作用下,其特定的空间构象被破坏,导致理化性质的改变和生物活性的丧失。 变性的本质:二硫 键与非共价键的破坏,不涉及肽键的断裂 变性后特点:生物
10、学活性丧失、溶解度下降、粘度增加、结晶能力消失、易被蛋白酶水解 变性的因素:加热、乙醇、强酸、强碱、重金属离子及生物碱试剂等 蛋白质复性:变性程度较轻,去除变性因素后,仍可恢复或部分恢复其原有的构象和功能 蛋白质的凝固作用:蛋白质经强酸或强碱变性后,仍能溶解于该溶液中。若调节 pH 值至其等电点时,变性蛋白质呈絮状析出,再加热,形成坚固的凝块。 蛋白质的复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。 蛋白质 的紫外吸收: 含有具有共轭双键的三种芳香族氨基酸,于 280nm 波长处有特征吸收峰。 蛋白质的呈色反应: 茚三酮反应:蛋白质水解后可产
11、生游离的氨基酸,原理同前 双缩脲反应:肽键与碱性硫酸铜共热,呈现紫色或红色。氨基酸不出现此反应,当蛋白质不断水解时,氨基酸浓度上升,其双缩脲呈色浓度逐渐下降,因此可以检测蛋白质的水解程度。 七、 蛋白质的分离纯化 透 析: 利用透析袋把大分子蛋白质与小分子化合物分开的方法。 超滤法: 应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜的方法。 丙酮沉淀: 0-4低温;丙酮的体积 10 倍 于被沉淀蛋白质;蛋白质沉淀后应迅速分离。 盐 析: 硫酸铵、硫酸钠或氯化钠等中性盐放入蛋白质溶液中,破坏水化膜并中和表面电荷,导致蛋白质胶体的稳定因素去除而沉淀。 免疫沉淀法: 利用特异抗体识别相应的抗
12、原蛋白,形成抗原抗体复合物,从蛋白质混合溶液中分离获得抗原蛋白的方法。 电 泳: 蛋白质在高于或低于其等电点的溶液中,受到电场力的作用向正极或负极泳动。 SDS-PAGE 电泳: 加入负电荷较多的 SDS(十二烷基磺酸钠),导致蛋白质分子间的电荷差异消失,此时蛋白质在电场中的泳动速率只和蛋白质颗粒大小有关,用于蛋白质分子 量的测定。 等电聚焦电泳: 在电场中形成一个连续而稳定的线性 pH梯度,电泳时被分离的蛋白质泳动至其等电点相等的 pH 值区域时,净电荷为零不再受电场力移动,该法用于根据蛋白质等电点的差异进行分离。 层 析: 待分离蛋白质溶液(流动相)经过一个固态物质(固定相)时,根据溶液中
13、待分离的蛋白质颗粒大小、电荷多少及亲和力等,使待分离的蛋白质在两相中反复分配,并以不同速度流经固定相而达到分离蛋白质的目的。 阴离子交换层析:负电量小的蛋白质首先被洗脱 凝胶过滤:分子量大的蛋白质最先洗脱 超速离心: 既可分离纯化蛋白质也可测定蛋白 质的分子量; 对于球形蛋白质而言,沉降系数 S大体上和分子量成正比关系 S(未知) /S(标准) Mr(未知) /Mr(标准) 2/3 八、 多肽链氨基酸序列分析方法及关键试剂名称 氨基酸序列分析 步骤一:分析已纯化蛋白质的氨基酸组成 步骤二:测定多肽链的氨基末端与羧基末端为何种氨基酸。以前用二硝基氟苯,现多用丹酰氯 步骤三:将肽链水解成片段( 表
14、 1-2)。 表 1-2 三种肽链水解方式的比较 胰蛋白酶 胰凝乳蛋白质酶 溴化氢法 作用部位 赖氨酸或精氨酸羧基侧的肽键 芳香族氨基羧基侧的肽键 甲硫氨酸羧基侧的肽键 步 骤四:测定各肽段的氨基酸排列顺序,采用 Edman 降解法,试剂为异硫氰酸苯酯 步骤五:统计学分析,组合排列对比,得到完整肽链氨基酸排列顺序 通过核酸来推演蛋白质中的氨基酸序列的步骤: 步骤一: 分离编码蛋白质的基因 步骤二: 测定 DNA 序列 步骤三: 排列出 mRNA 序列 步骤四: 按照三联密码的原则推演出氨基酸的序列 蛋白质空间结构测定 蛋白质二级结构含量测定:圆二色光谱法,测 -螺旋较多的蛋白质时,结果较为准确
15、。 蛋白质三维空间结构测定: X 射线衍射法和磁共振技术。 第二章 一、 核酸的分类、细胞分布、核酸元素组成 特点及碱基、核苷、核苷酸的化学结构 核酸是生物遗传的物质基础,是一切生物体所含有的最重要的生物大分子之一。天然存在的核酸根据其分子的物质组成不同分为两大类: DNA 与 RNA。 核酸的元素组成:主要由碳、氢、氧、氮、磷组成,磷的含量较为稳定,占核酸总量的 9-10%。 基本组成:核酸的基本组成是核苷酸。 二、 核苷酸间的连接方式 3 ,5 -磷酸二酯键; 5末端是指在 DNA 或 RNA 链中末端为 5 -磷酸基,未形成磷酸二酯键的一端; 3末端是指在 DNA 或 RNA 链中末端为
16、 3 -OH,未被酯化的一端; 各种简 化式书写时都是 5 3,其读向都是从左到右,所表示的碱基序列也都是从 5端到 3端。 三、 两类核酸( DNA 与 RNA)性质的异同 详见表 2-1。 表 2-1 DNA 与 RNA 性质的比较 DNA RNA 名称 脱氧核糖核苷酸 核糖核苷酸 碱基组成 A、 T、 C、 G A、 U、 C、 G 戊糖组成 -D-2-脱氧核糖 -D-核糖 类型 DNA mRNA、 tRNA、 rRNA 等 核苷酸 /脱氧核苷酸 dATP、 dTTP、 dCTP、 dGTP ATP、 UTP、 CTP、 GTP 分布部位 98%在细胞核中 2%在线粒体 中 90%分布于
17、胞液 10%分布于细胞核 基本结构 反向平行互补双螺旋 单链无规卷曲 与蛋白质的结合 主要与组蛋白结合 rRNA 与核蛋白体结合 稀有碱基 不含有 tRNA 含有 10-20%的稀有碱基 主要生物学功能 储存遗传信息 传递及表达遗传信息 理化性质 多元酸、线性高分子、粘度大 易在机械力作用下断裂 分子小,粘度小 纯品时 OD260/OD280 1.8 2.0 连接键 3 ,5 -磷酸二酯键 光波最大吸收值 260nm 附近 磷 酸 磷 酸 核苷酸 核 糖 碱 基 核酸分子 核 苷 四、 DNA 的一级结构、 二级结构要点 及 碱基配对规律 ,了解 DNA 的 高级结构形式 详见表 2-2。 表
18、 2-2 DNA 分子结构的比较 DNA 一级结构 DNA 二级结构 DNA 高级结构 定义 核苷酸的排列顺序 DNA 的双螺旋结构 在双螺旋结构的基础上,进一步折叠,在蛋白质的参与下组装成为的致密结构 结构特点 碱基的排列顺序 3 ,5 -磷酸二酯键 反向、平行、互补、双链 右手螺旋结构 DNA 结构的多样性 核小体、核小体卷曲及柱状结构折叠等形成超螺旋形式 稳定性的维系 磷酸二酯键 纵向:碱基的堆积力 横向:配对的氢键 五、 mRNA、 tRNA 二级结构 特点及 rRNA 的类型和 其它小分子 RNA mRNA、 tRNA、 rRNA 结构特点见 表 2-3。 其它小分子 RNA 种类及
19、功能见 表 2-4。 表 2-3 三种常见 RNA 的比较 mRNA tRNA rRNA 名称 信使 RNA 转运 RNA 核糖体 RNA 主要功能 蛋白质合成的直接模板 氨基酸的运载载体 核蛋白体的组成成分 蛋白质合成的场所 比例 约占总 RNA 的 5% 约占总 RNA的 10%-15% 最多,占总 RNA 的 75%-80% 二级结构 单 链 二级结构:三叶草形 三级结构:倒 L型 花 状 结构特点 5端带有 m7GpppN 帽结构 3端带有 polyA 尾结构 中间是遗传信息编码区 从 5至 3端分别是DHU 环、反密码子环、T环,至 3端为 CCA OH 原核 真核 大亚基 23S、
20、 5S 28S、 5S 小亚基 16S 18S 分布 胞 核 胞 质 胞 质 表 2-4 其它小分子 RNA 种类及功能 名 称 功 能 hnRNA 核 内 不 均 一RNA 成熟 mRNA 的前体 snRNA 核内小 RNA 参与 hnRNA 的剪接、转运 snoRNA 核仁小 RNA rRNA 的加工与修饰 scRNA/7SL-RNA 胞质小 RNA 蛋白质内质网定位合成的信号识别体组成成分 六、 DNA(热)变性、 复性 及分子杂交的概念 。 DNA 变性:在某些理化因素(温度、 pH、离子强度)作用下, DNA 双链的互补碱基对之间的氢键断裂,使 DNA 双螺旋结构松散,成为单链的现象
21、。 DNA 变性只改变其二级结构,不改变核苷酸排列顺序。 DNA 的增色效应: DNA 变性过程中,在紫外区 260nm 处的 OD 值增加,并与解链程度有一定比例的关系。 DNA 解链温度: DNA 的变性从开始解链到完全解链,在一个相当窄的温度范围内进行,期间紫外光吸收值达到最大值 50%的温度 称为解链温度,又称融解温度( Tm)。 Tm 值高低与其分子所含碱基中的 GC 含量相关, GC 含量越高, Tm 值越大。 DNA 复性:变性 DNA 在适当条件下,两条互补链可重新配对,恢复天然的双螺旋构象。 退火:热变性的 DNA 经缓慢冷却后复性的过程。 分子杂交: DNA 变性后的复性过
22、程中,如果将不同种类的 DNA 单链分子或 RNA 分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件下,就可以在不同的分子间形成杂化双链的现象。 七、 核酸酶的 概念 及性质 核酸酶: 所有可以水解核酸的酶,根据酶解底物的不同分为 DNA 酶和 RNA 酶。 核酸内切酶: 可以在 DNA 或 RNA 分子内部切断磷酸二酯键的酶。 核酸外切酶: 仅能水解位于核酸分子链末端核苷酸的酶。根据其作用的方向性,分为 5 3或 3 5核酸外切酶。 核 酶:具有 催化功能的 RNA 分子,底物是核酸,属于序列特异性的核酸内切酶。 催化性 DNA: 人工合成的具有序列特异性降
23、解 RNA 功能的寡聚脱氧核苷酸片段。 第三章 一、 酶及生物催化剂的基本概念;酶的分子组成及相关概念如酶蛋白、辅助因子(辅酶、辅基)、全酶、酶的活性中心和必需基团等 见表 3-1。 表 3-1 酶及酶的相 关概念 概 念 说 明 酶 由活细胞合成,对其特异性底物起高效催化作用的蛋白质。是机体内催化各种代谢反应最主要的催化剂。 生物催化剂 包括酶及核酶两个概念。核酶是具有高效、特异催化作用的核酸,是近年来发现的一类新的生物催化剂,主要是参与 RNA 的剪接。 酶及核酶两个概念都要提及。 单体酶 仅具有三级结构的酶 寡聚酶 由多个相同或不同亚基以非共价键连接组成的酶 多酶体系 由几种不同功能的酶
24、彼此聚合形成的多酶复合物 丙酮酸脱氢酶复合体 多功能酶 一些多酶体系在进化过程中由于基因的整 合,多种不同催化功能存在于一条多肽链中 嘧啶核苷酸从头合成的酶 单纯酶 仅由肽链构成的酶 脲酶、淀粉酶、脂酶等 结合酶 由酶蛋白和辅助因子组成的酶 酶蛋白和辅助因子结合形成的复合物称为全酶 只有全酶才有催化作用 辅助因子 辅酶 与酶蛋白结合疏松的辅助因子,可用透析或超滤方法去除 辅基 与酶蛋白结合紧密的辅助因子,不能用透析或超滤方法去除 金属离子多为酶的辅基 金属酶 金属离子作为辅助因子,且与酶结合紧密,提取过程中不易丢失 羧基肽酶、黄嘌呤氧化酶 金属激活酶 金属离子作为辅助因子,但与 酶结合疏松 已
25、糖激酶、肌酸激酶 酶的必需基团 酶分子中与酶活性密切相关的化学基团 酶的活性中心 必需基团组成具有特定空间结构的区域,能与底物结构并将底物转化为产物的区域,包含结合基团和催化基团 单纯酶与结合酶的活性中心 对单纯酶来说,活性中心就是酶分子在三维结构上比较接近的少数几个氨基酸残基,但通过肽链的盘绕、折叠而在空间构象上相互靠近; 活性中心的常见必需基团: His 残基的咪唑基、 Ser残基的羟基、 Cys 残基的巯基及 Glu 残基的 -羧基。 对结合酶来说,辅酶分子或辅酶分子上的某一部分结构 往往就是活性中心的组成部分。 金属离子的作用 作为酶活性中心的催化基团参与催化反应、传递电子; 作为连接
26、底物与酶的桥梁,便于酶对底物起作用; 维持酶蛋白构象; 中和阴离子,降低反应中的静电斥力。 维生素在酶促反应中的作用 详见表 3-2。 表 3-2 常见酶促反应中维生素的作用 维生素 学名 辅酶形式 酶促反应中的作用 B1 硫胺素 TPP 丙酮酸脱氢酶 , -酮戊二酸脱羧酶及转酮醇酶的辅酶 B2 核黄素 FAD、 FMN 多种氧化还原酶及递氢体的酶辅基参与递氢作用 PP 尼克酸 NAD、 NADP 脱氢酶 的辅酶 B6 吡哆醛 磷酸吡哆醛 氨基酸脱羧酶、转氨酶等的辅酶 B12 钴胺素 钴胺素 烷基转移的辅酶 泛酸 遍多酸 辅酶 A、 ACP 多种酰基转移反应的辅酶 H 生物素 羧化酶辅酶 羧化
27、酶的辅酶,参与 CO2的固定 叶酸 叶酸 FH4 各种 碳基团转移的活性载体 C 抗坏血酸 抗坏血酸 胶原中脯氨酰羟化酶、多巴胺 羟化酶等作用时提供还原物 二、 酶促反应的特点与酶促反应机制的学说 酶促反应的特点 酶促反应具有极高的效率:降低反应的活化能,但不改变反应的平衡点。 酶促反应具有高度的特异性: 绝对的特异性 :仅作用于特定结构的底物,进行一种专一的反应,生成一种特定的产物。如脲酶和琥珀酸脱氢酶。 相对的特异性:作用于一类化合物或一种化学键。如脂肪酶、磷酸酶、蛋白酶等。 立体异构特异性:仅作用于底物的一种立体异构体,如乳酸脱氢酶催化 L-乳酸;延胡索酸酶催化反式丁烯二酸与苹果酸间的裂
28、解。 酶促反应的可调节性:酶量调节; 酶催化效率调节; 改 变底物浓度进行调节。 酶促反应的高效不稳定性:由于酶的本质是蛋白质,易受理化因素的影响。 酶促反应机制的诱导契合假说 酶与底物接近时二者相互诱导、相互形变、相互适应。酶促反 应的机制很复杂,在酶的活性中心内底物可发生邻近效应和定向排列,酶对底物可进行酸碱多元催化在,底物在酶活性中心的疏水性口袋里发生表面效应。 三、 影响酶促反应动力学的 几种因素及其动力学特点 影响酶促反应速度的因素见表 3-3。 表 3-3 影响酶促反应速度的因素 影响因素 特 征 说 明 底物浓度 符合米 -曼氏方程 V( VmaxS) /(Km+S) 呈矩形双曲
29、线 酶浓度 V与酶浓度呈正比 在底物浓度足够大的情况下 PH值 有最适 pH 值,达到最大反应速度 不是酶的特征性常数 温度 有最适温度,达到最 大反应速度 不是酶的特征性常数 抑制剂 引起酶催化活性下降但不引起酶蛋白变性的物质 分不可逆性抑制与可逆性抑制 激活剂 使酶从无活性到有活性或使酶活性增加的物质 大多为金属离子 底物浓度对酶促反应速度的影响 Km 值的含义: 为酶促反应速度为最大速度一半时的底物浓度 Km 值是酶的特征性常数之一,只与酶的结构、底物和反应环境有关,与酶的浓度无关 Km 值可用来表示酶与底物的亲和力。 Km 值越小,酶与底物的亲和力越大,表示不需要很高的底物浓度就可容易
30、达到最大反应速度。反之亦然。 Vmax 是酶完全被底物饱和时的反 应速度,与酶浓度呈正比 Km 与 Vmax 的测定:双倒数作图得到林贝氏方程: 自变量是 1/S,应变量是 1/V,斜率是 Km/Vmax,在 y 轴的截距是 1/Vmax(图 3-1) 酶浓度的影响 图 3-1 斜率 当 SE时,酶促反应速度与 E成正比 pH 值的影响 在某一 pH 值,酶催化活性最大,称为最适 pH 值。 最适 pH值不是酶的特征性常数,大多数接 近中性。少数例外(如胃蛋白酶,最适 pH 值为 1.8;肝精氨酸酶最适 pH 值为 9.8)。 抑制剂的影响 酶的抑制剂: 引起酶催化活性下降但不引起酶蛋白变性的
31、物质。 表 3-4 两种抑制性作用的比较 不可逆性抑制 可逆性抑制 结合方式 共价键 非共价键 抑制剂的作用部位 活性中心上的必需基团 如有机磷农药: 丝氨酸上的羟基 重金属离子和砷化合物:巯基 S、 ES、 E 能否通过透析或超滤去除 否 可以 举例 有机磷农药、重金属离子 磺胺类等 三种可逆性抑制的比较 详见表 3-5。 表 3-5 三种可逆性抑制作用的比较 作用特征 无抑制剂 竞争性抑制 非竞争性抑制 反竞争性抑制 与 I 结合的组分 E E、 ES ES 动力学参数 表观 Km Km 增大 不变 减小 Vmax Vmax 不变 减小 减小 林 -贝氏作图 斜率 Km /Vmax 增大
32、增大 不变 X轴截距 -1/ Km 增大 不变 减小 Y轴截距 1/Vmax 不变 增大 增大 激活剂的影响 激活剂 :使酶从无活性到有活性或使活性增加的物质。 大多数为金属离子,如 Mg2+、 K+;有机化合物:如胆汁酸盐。 必需激活剂:为酶促反 应所必需,否则检测不到酶的活性。例 Mg2+于已糖激酶。 非必需激活剂:激活剂不存在时,仍能检测到一定的活性,例 Cl-于唾液淀粉酶。 四、 酶原与酶原的激活 酶 原: 无活性酶的前体。例消化酶原、凝血酶原等。 酶原的激活: 酶原向酶的转化过程。实质是酶活性中心的形成或暴露过程。 生理意义:保护自身不被酶破坏;保证酶在特定的部位与环境发挥作用;酶的
33、贮存形式。 五、 酶的快速调节与慢速调节的方式 快速调节包括变构调节与共价修饰调节 变构酶:指效应剂与酶的非催化部位可逆的结合,使酶发生构象的变化而影响酶的活性,其作用特点如下 : 反应的方程曲线为 S 型曲线,非米氏方程的矩形双曲线。 变构酶多为代谢途径的关键酶,催化的常为不可逆反应。 变构酶常由多个亚基组成,彼此间具有协同效应。 变构酶有催化部位和调节部位(而不是都具有催化亚基和调节亚基)。 变构调节是快速调节。 共价修饰:酶蛋白上的一些基团与某种化学基团发生可逆的共价结合,从而改变酶的活性。 常见的共价修饰包括:磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化、腺苷化与去腺苷化和 S
34、H 与 S S的互变等。 磷酸化与去磷酸化最为常见。 共价修饰是快速调节。 酶含量的调节:通过 改变酶合成或降解以调节细胞内酶的含量,属于慢速调节。 同工酶概念及应用 同工酶:是指催化的化学反应相同,酶蛋白的分子结构、理化性质及至免疫学性质不同的一组酶。由不同基因或等位基因编码的多肽链,或由同一基因转录生成的不同 mRNA 翻译的不同多肽链组成的蛋白质。 乳酸脱氢酶有五种类型,其中 LDH1 型在心肌细胞中最多;肝病时 LDH5 升高 肌酸激酶( CK)有三型:脑中含 CK1( BB 型);心肌含 CK2( MB 型);骨骼肌含 CK3( MM型) 六、 酶的命名与分类原则 酶均有两个名称,系
35、统名称应标明酶的所有底物与反应性质。推荐名称 是从习惯名称中挑选而来,可分为六类:氧化还原酶类;转移酶类;水解酶类;裂合酶类;异构酶类; 合成酶类。 七、 酶在医学中的应用 酶与疾病的关系密切。遗传性因素和许多疾病均可引起酶的质与量的异常以及活性的改变,并引发多种疾病。检验血液中酶活性的改变可以帮助诊断某些疾病。许多药物可通过改变人体或致病菌中酶的活性从而达到治疗目的。此外,酶还可以作为工具用于临床检验和科学研究。 第四章 一、 糖的主要生理功能 提供能量是糖最主要的生理功能。 糖还是机体重要的碳源,糖代谢的中间产物可转变成其他的含碳化合物。 糖也是组 成人体组织结构的重要成分,例糖蛋白、糖脂
36、。 糖的磷酸衍生物形成生物活性物质,例 NAD 、 FAD、 DNA、 RNA、 ATP 等。 二、 糖无氧氧化的基本反应过程、能量生成、关键酶调节及生理意义 糖的无氧氧化: 又称糖酵解,葡萄糖在缺氧或供氧不足情况下,生成乳酸的过程。 基本反应过程: 分为两个反应阶段,全程在胞浆中进行 第一阶段:糖酵解途径,由一分子葡萄糖分解分成两分子丙酮酸的过程 记忆要点:反应的“一、二、三”。 一次脱氢: 3-磷酸甘油醛 1,3-二磷酸甘油酸 + NADH+H 的氧化过程。 二次底物水平磷酸化过 程:各生成 1 分子 ATP 1,3-二磷酸甘油酸 3-磷酸甘油酸 + ATP 磷酸烯醇式丙酮酸丙酮酸 + A
37、TP 二次 ATP 消耗的反应: 葡萄糖 + ATP 6-磷酸葡萄糖 6-磷酸果糖 + ATP 1,6-二磷酸果糖 二个磷酸丙糖的生成: 1,6-二磷酸果糖裂解为磷酸二羟丙酮和 3-磷酸甘油醛 二个 ATP 的净生成: 2(底物水平磷酸化) 2(磷酸丙糖) 2( ATP 消耗) 三次不可逆性反应,三个关键酶的参与 已糖激酶 催化 葡萄糖 6-磷酸葡萄糖 6-磷酸果糖激酶 -1 催化 6-磷酸果糖 1,6-二磷酸果糖 丙酮酸激酶 催化 磷酸烯醇式丙酮酸 丙酮酸 第二阶段:丙酮酸还原生成乳酸,所需的氢原子由前述一次脱氢过程提供,反应由乳酸脱氢酶催化,辅酶是 NAD+。 糖酵解的调节: 主要在三个关
38、键酶上的调节(见 表 4-1)。 表 4-1 糖酵解关键酶的调节 激活剂 抑制剂 附 注 6-磷酸果糖激酶 -1 AMP、 ADP 1,6-二磷酸果糖 2,6-二磷酸果糖 ATP、柠檬酸 1,6-二磷酸果糖是该酶的正反馈激活剂 2,6-二磷酸果糖是该酶最强的变构激活剂 丙酮酸激酶 1,6-二磷酸果糖 ATP、 丙氨酸 已糖激酶 6-磷酸葡萄糖 长链脂酰 CoA 有四种同工酶,肝细胞中的型,称为葡萄糖激酶 糖酵解的生理 意义 迅速提供能量,对肌收缩更为重要。 成熟红细胞的供能。 神经组织、白细胞、骨髓等代谢活跃的组织,即使不缺氧也多由糖酵解提供能量。 三、 糖有氧氧化的基本反应过程、能量生成、关键酶调节及生理意义 糖有氧氧化的定义: 葡萄糖在有氧条件下彻底氧化生成水和二氧化碳的过程。 基本反应过程:分为三个反应阶段 第一阶段:糖酵解途径生成丙酮酸,同前述糖酵解过程 第二阶段:丙酮酸进入线粒体后,氧化脱羧生成乙 酰 CoA 总反应式为:丙酮酸 + NAD + 辅酶 A 乙酰 CoA + NADH+H + CO2 反应不可逆,由 丙酮酸脱氢酶复合体催化 参与反应的辅酶有:硫胺素焦磷酸酯( TPP)、硫辛酸、 FAD、 NAD 、 CoA 第三阶段:三羧酸循环及氧化磷酸化,生成大量的 ATP 和水