1、浅析电力系统的继电保护技术发展趋势摘要:随着学科技术的发展,为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。继电保护技术如何有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是电力技术人员需要解决的技术问题。 关键词:电力系统;继电保护技术;措施;发展趋势 中图分类号: TM77 文献标识码:A 文章编号: 引言 近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术
2、问题。 1.继电保护发展现状 上世纪 50 年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建立了继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。60 到 80 年代,晶体管继电保护技术蓬勃发展。到 90 年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面某电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,从 90 年代开始我国继电保护技术已进入了微机保护的时代。目前,继电保护技术发展迅速,正向计算机化、网络化方向发展,
3、实现保护、控制、测量、数据通信体化和智能化。 2.线路的继电保护技术 电压等级高的输电线路一般按双侧具有电源考虑,所接电网为大电流接地系统,断路器一般采用分相操作,通常采用综合重合闸方式。故障的形式包括:三相故障、两相故障、两相接地故障、单相接地故障共有不同相别的十种故障类型,同时要考虑非全相运行的问题、同杆并架双回线的跨线故障问题等。高电压等级输电线路在电力系统中占据着十分重要的地位,对其继电保护有较高的要求,微机保护后,线路保护一般均设计为成套保护,即一套保护完成所有的主保护和原理上的后备保护功能,为了实现设备上的后备,通常采用双重化配置或多重化配置。 2.1 输电线路的距离保护 距离保护
4、是通过反映故障点到保护安装处的距离而动作的继电保护装置,通常应用于 110kV 及以上电压等级的输电线路,其原理也可以应用于 35kV 及以下电压等级的配电线路。构成距离保护的核心就是测量故障点到保护安装处的距离,并与一个事先整定的距离相比较,测量距离小于整定距离时保护动作。测量故障距离的方法包括阻抗法、行波法和雷达法,其中应用最多的是阻抗法。 2.2 输电线路的纵联电流差动保护 基于基尔霍夫电流定律的纵联电流差动保护,是到目前为止最为完善的继电保护原理,在发电机、变压器、母线、电抗器、大容量电动机和输配电线路等电气设备中都得到了应用。其基本工作原理如下: 正常及外部故障时即流入差动继电器 K
5、D 中点电流为 0,继电器不会动作。被保护设备发生故障时(区内故障时)流入 KD 的电流为故障电流的二次值,KD 动作。 可见,在理想情况下,根据 KD 中是否有电流,就能够区分出是否有内部故障,是否应将被保护设备从系统中切除。 3.继电保护安全运行的措施 3.1 定值区问题。微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。采取的措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明
6、定值编号,避免定值区出错。 3.2 做好继电保护装置检验。在继电保护装置检验过程中必须注意,将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。电流回路升流和电压回路升压试验,也必须在其它试验项目完成后最后进行。 3.3 一般性检查。不论何种保护,一般性检查都是非常重要的。首先清点连接件是否紧固焊接点是否虚焊机械特性等。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。 3.4 工作记录和检查习惯。工作记录必须认
7、真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现一些工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。 3.5 接地问题。继电保护工作中接地问题是非常突出的,大致分以下两点:首先,保护屏的各装置机箱屏障等的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表
8、测电阻是否符合规程要求。 4.电力系统继电保护技术的发展趋势 随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。 4.1 网络化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。 4.2 计算机化。随着计算机硬件的迅猛
9、发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力。与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力、高级语言编程等。 4.3 一体化技术。一体化技术说到底,就是实现继电保护装置在数据处理上的一体进程,始终把单一的继电保护装置作为整个电网运行系统的一个终端设备,它可从网上获取电力系统运行和故障的任何信息和数掘,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。 4.4 变电站综合自动化技术。现代计算机技术、通信技术和网络技术为改变变电站目
10、前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远控制与信息共享。 4.5 智能化。由于人工智能的逻辑思维和快速处理能力,人工智能已成为在线状态评估的重要工具,越来越多地应用于电力系统的多个方面中,特别是继电保护方面,其在控制、管理及规划等领域中也发挥着重要作用。 4.6 自适应控制技术。自适应继电保护的概念始于 20 世纪 80 年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适
11、应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。 5.结束语 电力系统继电保护能够快速、有效的切除故障设备,保证保证非故障设备的安全运行,能够有选择性的发出故障报警信号,维护电力系统的畅通。电力系统的发展也对机电保护提出了更高的要求,继电保护装置容易出现故障,只有对继电保护装置定期检查并维护,及时发现故障并处理,保证电力系统正常运转,保证供电的可靠性。 参考文献: 1周培华.浅谈电力系统中继电保护的发展趋势J.科技咨询导报2007 2张志竟,黄玉铮编.电力系统继电保护原理与运行分析.上册,北京,中国电力出版社,1995 年 3邵玉槐.电力系统继电保护原理M.中国电力出版社,2008.